Advertisement

Direct and inverse pumping in flows with homogeneous and non-homogeneous swirl

  • A. PothératEmail author
  • F. Rubiconi
  • Y. Charles
  • V. Dousset
Regular Article

Abstract.

The conditions in which meridional recirculations appear in swirling flows above a fixed wall are analysed. In the classical Bodewädt problem, where the swirl tends towards an asymptotic value away from the wall, the well-known “tea-cup effect" drives a flow away from the plate at the centre of the vortex. Simple dimensional arguments applied to a single vortex show that if the intensity of the swirl decreases away from the wall, the sense of the recirculation can be inverted, and that the associated flow rate scales with the swirl gradient. If the flow is quasi-2D, the classical tea-cup effect takes place. This basic theory is confirmed by numerical simulations of a square array of steady, electrically driven vortices. Experiments in the turbulent regimes of the same configuration reveal that these mechanisms are active in the average flow and in its fluctuating part. These mechanisms provide an explanation for previously observed phenomena in electrolyte flows. They also put forward a possible mechanism for the generation of helicity in flows close to two-dimensionality, which plays a key role in the transition between 2D and 3D turbulence.

Graphical abstract

Keywords

Flowing matter: Nonlinear Physics 

References

  1. 1.
    V.W. Ekman, Ark. Mat. Astron. Fys. 2, 1 (1905)Google Scholar
  2. 2.
    U.T. Bö, Z. Angew. Math. Mech. 20, 241 (1940)CrossRefGoogle Scholar
  3. 3.
    L. Gorbunov, A. Pedchenko, A. Feodorov, E. Tomzig, J. Virbulis, W.V. Ammon, J. Cryst. Growth 257, 7 (2003)ADSCrossRefGoogle Scholar
  4. 4.
    J. Paret, P. Tabeling, Phys. Rev. Lett. 79, 4162 (1997)ADSCrossRefGoogle Scholar
  5. 5.
    J. Sommeria, J. Fluid Mech. 170, 139 (1986)ADSCrossRefGoogle Scholar
  6. 6.
    M Shats, D. Byrne, H. Xia, Phys. Rev. Lett. 105, 264501 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    H. Xia, D. Byrne, G. Falkovich, M. Shats, Nature Phys. 7, 321 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    L. Biferale, S. Musacchio, F. Toschi, Phys. Rev. Lett. 108, 164501 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    R.A.D. Akkermans, L.P.J. Kamp, H.J.H. Clercx, G.H.F. Van Heijst, EPL 83, 24001 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    H.P. Greenspan, The Theory of Rotating Fluids, (Cambridge University Press, 1969)Google Scholar
  11. 11.
    J. Sommeria, R. Moreau, J. Fluid Mech. 118, 507 (1982)ADSCrossRefzbMATHGoogle Scholar
  12. 12.
    A. Pothérat, R. Klein, submitted to J. Fluid Mech., arXiv:1305.7105 (2014)
  13. 13.
    J. Sommeria, J. Fluid Mech. 189, 553 (1988)ADSCrossRefGoogle Scholar
  14. 14.
    P.H. Roberts, Introduction to Magnetohydrodynamics, (Longmans, 1967)Google Scholar
  15. 15.
    M.J. Ni, R. Munipalli, N.B. Morley, P.Y. Huang, M. Abdou, J. Comput. Phys. 227, 174 (2007)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    V. Dousset, A. Pothérat, J. Fluid Mech. 691, 341 (2012)ADSCrossRefzbMATHGoogle Scholar
  17. 17.
    H.G. Weller, G. Tabor, H. Jasak, C. Fureby, Comp. Phys. 12, 620 (1998)CrossRefGoogle Scholar
  18. 18.
    R.A.D. Akkermans, A.R. Cieslik, L.P.J. Kamp, R.R. Trieling, H.J.H. Clercx, G.J.F. van Heijst, Phys. Fluids 20, 116601 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    A. Pothérat, J. Sommeria, R. Moreau, J. Fluid Mech. 424, 75 (2000)ADSCrossRefzbMATHGoogle Scholar
  20. 20.
    A. Pothérat, J. Sommeria, R. Moreau, J. Fluid Mech. 534, 115 (2005)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    R. Klein, A. Pothérat, Phys. Rev. Lett. 104, 034502 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    D. Brito, H.C. Nataf, P. Cardin, J. Aubert, J.P. Masson, Exp. Fluids 31, 653 (2001)CrossRefGoogle Scholar
  23. 23.
    D. Brito, T. Alboussière, P. Cardin, N. Gagnière, D. Jault, P. La Rizza, J.-P. Masson, H.-C. Nataf, D. Schmitt, Phys. Rev. E 83, 066310 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    B. Mück, C. Günter, L. Bühler, J. Fluid Mech. 418, 265 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    A. Pothérat, EPL 98, 64003 (2012)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • A. Pothérat
    • 1
    Email author
  • F. Rubiconi
    • 1
  • Y. Charles
    • 2
  • V. Dousset
    • 1
  1. 1.Coventry UniversityApplied Mathematics Research CentreCoventryUK
  2. 2.Grenoble High Magnetic Field Laboratory and CRETA Laboratory/CNRS-GrenobleGrenobleFrance

Personalised recommendations