Advertisement

Low Reynolds number suspension gravity currents

  • Sandeep Saha
  • Dominique Salin
  • Laurent Talon
Regular Article

Abstract

The extension of a gravity current in a lock-exchange problem, proceeds as square root of time in the viscous-buoyancy phase, where there is a balance between gravitational and viscous forces. In the presence of particles however, this scenario is drastically altered, because sedimentation reduces the motive gravitational force and introduces a finite distance and time at which the gravity current halts. We investigate the spreading of low Reynolds number suspension gravity currents using a novel approach based on the Lattice-Boltzmann (LB) method. The suspension is modeled as a continuous medium with a concentration-dependent viscosity. The settling of particles is simulated using a drift flux function approach that enables us to capture sudden discontinuities in particle concentration that travel as kinematic shock waves. Thereafter a numerical investigation of lock-exchange flows between pure fluids of unequal viscosity, reveals the existence of wall layers which reduce the spreading rate substantially compared to the lubrication theory prediction. In suspension gravity currents, we observe that the settling of particles leads to the formation of two additional fronts: a horizontal front near the top that descends vertically and a sediment layer at the bottom which aggrandises due to deposition of particles. Three phases are identified in the spreading process: the final corresponding to the mutual approach of the two horizontal fronts while the laterally advancing front halts indicating that the suspension current stops even before all the particles have settled. The first two regimes represent a constant and a decreasing spreading rate respectively. Finally we conduct experiments to substantiate the conclusions of our numerical and theoretical investigation.

Graphical abstract

Keywords

Flowing Matter: Liquids and Complex Fluids 

References

  1. 1.
    J. Simpson, Annu. Rev. Fluid Mech. 14, 213 (1982).ADSCrossRefGoogle Scholar
  2. 2.
    H. Huppert, J. Fluid Mech. 554, 299 (2006).ADSCrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    T. Von Karman, Bull. Am. Math. Soc 46, 615 (1940).CrossRefGoogle Scholar
  4. 4.
    L. Prandtl, Essentials of Fluid Dynamics (Hafner, New York, 1952).Google Scholar
  5. 5.
    I.R. Wood, J. Fluid Mech. 42, 671 (1970).ADSCrossRefGoogle Scholar
  6. 6.
    I. Bou Malham, N. Jarrige, J. Martin, N. Rakotomalala, L. Talon, D. Salin, J. Chem. Phys. 133, 244505 (2010).ADSCrossRefGoogle Scholar
  7. 7.
    N. Jarrige, I. Bou Malham, J. Martin, N. Rakotomalala, D. Salin, L. Talon, Phys. Rev. E 81, 066311 (2010).ADSCrossRefGoogle Scholar
  8. 8.
    T. Séon, J. Hulin, D. Salin, B. Perrin, E. Hinch, Phys. Fluids 16, L103 (2004).CrossRefGoogle Scholar
  9. 9.
    T. Bonometti, S. Balachandar, J. Magnaudet, J. Fluid Mech. 616, 445 (2008).ADSCrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    L. Talon, N. Goyal, E. Meiburg, J. Fluid Mech. 721, 268 (2013).ADSCrossRefMathSciNetGoogle Scholar
  11. 11.
    H. Huppert, J. Shepherd, R. Haraldur Sigurdsson, S. Sparks, J. Volcanol. Geotherm. Res. 14, 199 (1982).ADSCrossRefGoogle Scholar
  12. 12.
    J. Fay, Technical report, DTIC Document (1969).Google Scholar
  13. 13.
    R.T. Bonnecaze, H.E. Huppert, J.R. Lister, J. Fluid Mech. 250, 339 (1993).ADSCrossRefGoogle Scholar
  14. 14.
    R. Bonnecaze, M. Hallworth, H. Huppert, J. Lister, J. Fluid Mech. 294, 93 (1995).ADSCrossRefGoogle Scholar
  15. 15.
    H. Huppert, Philos. Trans.: Math. Phys. Eng. Sci. 356, 2471 (1998).ADSCrossRefMATHGoogle Scholar
  16. 16.
    E. Meiburg, B. Kneller, Annu. Rev. Fluid Mech. 42, 135 (2010).ADSCrossRefGoogle Scholar
  17. 17.
    M. Hallworth, H. Huppert, Phys. Fluids 10, 1083 (1998).ADSCrossRefGoogle Scholar
  18. 18.
    A. Hogg, M. Ungarish, H. Huppert, Eur. J. Mech. B-Fluids 19, 139 (2000).CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    F. Necker, C. Härtel, L. Kleiser, E. Meiburg, J. Fluid Mech. 545, 339 (2005).ADSCrossRefMATHGoogle Scholar
  20. 20.
    M. Ungarish, An Introduction to Gravity Currents and Intrusions (Chapman & Hall/CRC, 2009).Google Scholar
  21. 21.
    L. Rondon, O. Pouliquen, P. Aussillous, Phys. Fluids 23, 073301 (2011).ADSCrossRefGoogle Scholar
  22. 22.
    S. Mueller, E. Llewellin, H. Mader, Proc. R. Soc. A: Math. Phys. Eng. Sci. 466, 1201 (2010).ADSCrossRefGoogle Scholar
  23. 23.
    G. Ovarlez, F. Bertrand, S. Rodts, J. Rheol. 50, 259 (2006).ADSCrossRefGoogle Scholar
  24. 24.
    J. Brady, G. Bossis, Annu. Rev. Fluid Mech. 20, 111 (1988).ADSCrossRefGoogle Scholar
  25. 25.
    P. Hoogerbrugge, J. Koelman, Europhys. Lett. 19, 155 (1992).ADSCrossRefGoogle Scholar
  26. 26.
    S. Chen, G. Doolen, Annu. Rev. Fluid Mech. 30, 329 (1998).ADSCrossRefMathSciNetGoogle Scholar
  27. 27.
    R. Glowinski, T. Pan, T. Hesla, D. Joseph, Int. J. Multiphase Flow 25, 755 (1999).CrossRefMATHGoogle Scholar
  28. 28.
    J. Richardson, W. Zaki, Chem. Eng. Sci. 3, 65 (1954).CrossRefGoogle Scholar
  29. 29.
    G.J. Kynch, Trans. Faraday Soc. 48, 166 (1952).CrossRefGoogle Scholar
  30. 30.
    W. Schneider, J. Fluid Mech. 120, 323 (1982).ADSCrossRefMATHGoogle Scholar
  31. 31.
    S.H. Maron, P.E. Pierce, J. Colloid Sci. 11, 80 (1956).CrossRefGoogle Scholar
  32. 32.
    J. Stickel, R. Powell, Annu. Rev. Fluid Mech. 37, 129 (2005).ADSCrossRefMathSciNetGoogle Scholar
  33. 33.
    A. Fall, F. Bertrand, G. Ovarlez, D. Bonn, Phys. Rev. Lett. 103, 178301 (2009).ADSCrossRefGoogle Scholar
  34. 34.
    F. Blanc, F. Peters, E. Lemaire, J. Rheol. 55, 835 (2011).ADSCrossRefGoogle Scholar
  35. 35.
    A. Acrivos, E. Herbolzheimer, J. Fluid Mech. 92, 435 (1979).ADSCrossRefMATHGoogle Scholar
  36. 36.
    E. Guazzelli, J. Hinch, Annu. Rev. Fluid Mech. 43, 97 (2011).ADSCrossRefMathSciNetGoogle Scholar
  37. 37.
    J. Martin, N. Rakotomalala, D. Salin, Phys. Fluids 6, 3215 (1994).ADSCrossRefGoogle Scholar
  38. 38.
    J. Martin, N. Rakotomalala, D. Salin, Phys. Rev. Lett. 74, 1347 (1995).ADSCrossRefGoogle Scholar
  39. 39.
    J.C. Bacri, C. Frenois, M. Hoyos, R. Perzynski, N. Rakotomalala, D. Salin, Europhys. Lett. 2, 123 (1986).ADSCrossRefGoogle Scholar
  40. 40.
    J. Martin, N. Rakotomalala, D. Salin, Phys. Fluids 7, 2510 (1995).ADSCrossRefGoogle Scholar
  41. 41.
    I. Ginzburg, F. Verhaeghe, D. d’Humières, Commun. Comput. Phys. 3, 427 (2008).MathSciNetGoogle Scholar
  42. 42.
    I. Ginzburg, D. d’Humières, A. Kuzmin, J. Stat. Phys. 139, 1090 (2010).ADSCrossRefMATHMathSciNetGoogle Scholar
  43. 43.
    G. Whitham, Linear and Nonlinear Waves (John Wiley & Sons, 1999).Google Scholar
  44. 44.
    A.E. Boycott, Nature 104, 532 (1920).ADSCrossRefGoogle Scholar
  45. 45.
    E. Ponder, Q. J. Expt. Physiol. 15, 235 (1925).Google Scholar
  46. 46.
    H. Nakamura, K. Kuroda, Keijo J. Med. 8, 235 (1937).Google Scholar
  47. 47.
    S.M. Taghavi, T. Seon, D.M. Martinez, I.A. Frigaard, J. Fluid Mech. 639, 1 (2009).ADSCrossRefMATHGoogle Scholar
  48. 48.
    J. Martin, N. Rakotomalala, L. Talon, D. Salin, J. Fluid Mech. 673, 132 (2011).ADSCrossRefMATHMathSciNetGoogle Scholar
  49. 49.
    H. Huppert, J. Fluid Mech. 121, 43 (1982).ADSCrossRefGoogle Scholar
  50. 50.
    J. Zeng, Y.C. Yortsos, D. Salin, Phys. Fluids 15, 3829 (2003).ADSCrossRefMathSciNetGoogle Scholar
  51. 51.
    A. Acrivos, E. Herbolzheimer, J. Fluid Mech. 92, 435 (1979).ADSCrossRefMATHGoogle Scholar
  52. 52.
    M. Hoyos, J.C. Bacri, J. Martin, D. Salin, Phys. Fluids 6, 3809 (1994).ADSCrossRefGoogle Scholar
  53. 53.
    V.K. Birman, J.E. Martin, E. Meiburg, J. Fluid Mech. 537, 125 (2005).ADSCrossRefMATHMathSciNetGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Sandeep Saha
    • 1
    • 2
  • Dominique Salin
    • 1
    • 2
  • Laurent Talon
    • 1
    • 2
  1. 1.UPMC Univ Paris 06Univ Paris-Sud, CNRSParisFrance
  2. 2.Lab FAST, Bat 502Campus UnivOrsayFrance

Personalised recommendations