Neutrons for rafts, rafts for neutrons

  • V. Rondelli
  • E. Del Favero
  • S. Motta
  • L. CantùEmail author
  • G. Fragneto
  • P. Brocca
Regular Article
Part of the following topical collections:
  1. Neutron Biological Physics


The determination of the structure of membrane rafts is a challenging issue in biology. The selection of membrane components both in the longitudinal and transverse directions plays a major role as it determines the creation of stable or tunable platforms that host interactions with components of the outer environment. We focus here on the possibility to apply neutron scattering to the study of raft mimics. With this aim, we realized two extreme experimental models for the same complex membrane system (phospholipid : cholesterol : ganglioside GM1), involving two of the characteristic components of glycolipid-enriched rafts. One consists of a thick stack of tightly packed membranes, mixed and symmetric in composition, deposited on a silicon wafer and analyzed by neutron diffraction. The other consists of a free floating individual membrane, mixed and asymmetric in composition in the two layers, studied by neutron reflection. We present here results on the ganglioside-cholesterol coupling. Ganglioside GM1 is found to force the redistribution of cholesterol between the two layers of the model membranes. This causes cholesterol exclusion from compositionally symmetric ganglioside-containing membranes, or, alternatively, asymmetric cholesterol enrichment in raft-mimics, where gangliosides reside into the opposite layer.

Graphical abstract


Topical issue: Neutron Biological Physics 


  1. 1.
    K. Simons, E. Ikonen, Nature 387, 569 (1997).ADSCrossRefGoogle Scholar
  2. 2.
    S. Hakomori, Proc. J. Acad. Ser. B 81, 189 (2005).CrossRefGoogle Scholar
  3. 3.
    H. Ohvo-Rekilä, B. Ramstedt, P. Leppimäki, J.P. Slotte, Prog. Lipid Res. 41, 66 (2002).CrossRefGoogle Scholar
  4. 4.
    G. van Meer, Cold Spring Harb. Perspect. Biol. 3, a004671 (2011).CrossRefGoogle Scholar
  5. 5.
    J. Fantini, F.J. Barrantes, Biochim Biophys Acta 1788, 2345 (2009).CrossRefGoogle Scholar
  6. 6.
    G. van Meer, D.R. Voelkerand, G.W. Feigenson, Nat. Rev. Mol. Cell. Biol. 9, 112 (2008).CrossRefGoogle Scholar
  7. 7.
    P.J. Quinn, Prog. Lipid Res. 49, 390 (2010).CrossRefGoogle Scholar
  8. 8.
    O.G. Mouritsen, Biochim. Biophys. Acta 1798, 1286 (2010).CrossRefGoogle Scholar
  9. 9.
    D.A. Brown, E. London, J. Biol. Chem. 275, 17221 (2000).CrossRefGoogle Scholar
  10. 10.
    S. Sonnino, A. Prinetti, L. Mauri, V. Chigorno, G. Tettamanti, Chem. Rev. 106, 2111 (2006).CrossRefGoogle Scholar
  11. 11.
    W.G. Wood, U. Igbavboa, W.E. Muller, G.P. Eckert, J. Neurochem. 116, 684 (2011).CrossRefGoogle Scholar
  12. 12.
    G. Tettamanti, F. Bonali, S. Marchesini, V. Zambotti, Biochim. Biophys. Acta 296, 160 (1973).CrossRefGoogle Scholar
  13. 13.
    L. Perino-Gallice, G. Fragneto, U. Mennicke, T. Salditt, F. Rieutord, Eur. Phys. J. E 8, 275 (2002).CrossRefGoogle Scholar
  14. 14.
    V. Rondelli, G. Fragneto, S. Motta, E. Del Favero, P. Brocca, S. Sonnino, L. Cantú, Biochim. Biophys. Acta 1818, 2860 (2012).CrossRefGoogle Scholar
  15. 15.
    J.R. Vig, J. Vac. Sci. Tecnol. A 3, 1027 (1985).ADSCrossRefGoogle Scholar
  16. 16.
    D. Guard-Friar, C. Cben, A.S. Englet, J. Phys. Chem. 89, 1810 (1985).CrossRefGoogle Scholar
  17. 17.
    A. Charrier, F. Thibaudau, Biophys. J. 89, 1094 (2005).CrossRefGoogle Scholar
  18. 18.
    A. Prinetti, V. Chigorno, S. Prioni, N. Loberto, N. Marano, G. Tettamanti, S. Sonnino, J. Biol. Chem. 276, 21136 (2001).CrossRefGoogle Scholar
  19. 19.
    S. Sonnino, L. Cantú, M. Corti, D. Acquotti, B. Venerando, Chem. Phys. Lipids 71, 21 (1994).CrossRefGoogle Scholar
  20. 20.
    M. Born, E. Wolf, Principles of Optics (Pergamon Press Ltd, London, 1959).Google Scholar
  21. 21.
    J. Penfold, R.K. Thomas, J. Phys.: Condens. Matter 2, 1369 (1990).ADSCrossRefGoogle Scholar
  22. 22.
    L. Parratt, G. Phys. Rev. 95, 359 (1954).ADSCrossRefGoogle Scholar
  23. 23.
    F. Abeles, J. Phys. (Paris) 11, 307 (1950).zbMATHGoogle Scholar
  24. 24.
    R. Cubitt, G. Fragneto, Appl. Phys. A 74, S329 (2002).ADSCrossRefGoogle Scholar
  25. 25.
    A. Nelson, J. Appl. Crystallogr. 39, 273 (2006).CrossRefGoogle Scholar
  26. 26.
    G. Foster, A. Meister, A. Blume, Curr. Opin. Colloid Interface Sci 6, 294 (2001).CrossRefGoogle Scholar
  27. 27.
    V.A. Raghunathan, J. Katsaras, Phys. Rev. Lett. 74, 4456 (1995).ADSCrossRefGoogle Scholar
  28. 28.
    E. Del Favero, A. Raudino, P. Brocca, S. Motta, G. Fragneto, M. Corti, L. Cantú, Langmuir 25, 4190 (2009).CrossRefGoogle Scholar
  29. 29.
    B. Westerlund, J.P. Slotte, Biochim. Biophys. Acta 1788, 194 (2009).CrossRefGoogle Scholar
  30. 30.
    U. Seifert, R. Lipowsky, Handbook of Biological Physics (Elsevier, Amsterdam, 1995).Google Scholar
  31. 31.
    J. Gallova, D. Uhrikova, N. Kucerka, S. Doktorovova, S. Funari, J. Teixeira, P. Balgavy, Eur. Biophys. J. 40, 153 (2011).CrossRefGoogle Scholar
  32. 32.
    P. Brocca, L. Cantú, M. Corti, E. Del Favero, S. Motta, Langmuir 20, 2141 (2004).CrossRefGoogle Scholar
  33. 33.
    D. Bach, E. Wachtel, Biochim. Biophys. Acta. 1610, 187 (2003).CrossRefGoogle Scholar
  34. 34.
    C. Yuan, L.J. Johnston, Biophys. J. 79, 2768 (2000).CrossRefGoogle Scholar
  35. 35.
    Y. Gerelli, L. Porcar, G. Fragneto, Langmuir 28, 15922 (2012).CrossRefGoogle Scholar
  36. 36.
    V. Rondelli, G. Fragneto, S. Motta, E. Del Favero, L. Cantú, J. Phys.: Conf. Ser. 340, 012083 (2012).ADSCrossRefGoogle Scholar
  37. 37.
    T. Hayakawa, M. Hirai, J. Appl. Cryst. 36, 489 (2003).CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • V. Rondelli
    • 1
  • E. Del Favero
    • 2
  • S. Motta
    • 1
  • L. Cantù
    • 1
    Email author
  • G. Fragneto
    • 2
  • P. Brocca
    • 1
  1. 1.Department of Medical Biotechnologies and Traslational MedicineUniversity of MilanSegrateItaly
  2. 2.Institut Laue-LangevinGrenoble CedexFrance

Personalised recommendations