Small angle neutron scattering for the study of solubilised membrane proteins

  • Cécile Breyton
  • Frank Gabel
  • Mathilde Lethier
  • Ali Flayhan
  • Grégory Durand
  • Jean-Michel Jault
  • Céline Juillan-Binard
  • Lionel Imbert
  • Martine Moulin
  • Stéphanie Ravaud
  • Michael Härtlein
  • Christine Ebel
Regular Article
Part of the following topical collections:
  1. Neutron Biological Physics

Abstract

Small angle neutron scattering (SANS) is a powerful technique for investigating association states and conformational changes of biological macromolecules in solution. SANS is of particular interest for the study of the multi-component systems, as membrane protein complexes, for which in vitro characterisation and structure determination are often difficult. This article details the important physical properties of surfactants in view of small angle neutron scattering studies and the interest to deuterate membrane proteins for contrast variation studies. We present strategies for the production of deuterated membrane proteins and methods for quality control. We then review some studies on membrane proteins, and focus on the strategies to overcome the intrinsic difficulty to eliminate homogeneously the detergent or surfactant signal for solubilised membrane proteins, or that of lipids for membrane proteins inserted in liposomes.

Graphical abstract

Keywords

Topical issue: Neutron Biological Physics 

References

  1. 1.
    M.V. Petoukhov, D.I. Svergun, Curr. Opin. Struct. Biol. 17, 562 (2007).CrossRefGoogle Scholar
  2. 2.
    C. Neylon, Eur. Biophys. J. Biophys. Lett. 37, 531 (2008).CrossRefGoogle Scholar
  3. 3.
    T. Madl, F. Gabel, M. Sattler, J. Struct. Biol. 173, 472 (2011).CrossRefGoogle Scholar
  4. 4.
    H.H. Niemann, M.V. Petoukhov, M. Hartlein, M. Moulin, E. Gherardi, P. Timmins, D.W. Heinz, D.I. Svergun, J. Mol. Biol. 377, 489 (2008).CrossRefGoogle Scholar
  5. 5.
    J.Q. Li, D.J.E. Callaway, Z.M. Bu, J. Mol. Biol. 392, 166 (2009).CrossRefGoogle Scholar
  6. 6.
    B.N. Chaudhuri, S. Gupta, V.S. Urban, M.R. Chance, R. D’Mello, L. Smith, K. Lyons, J. Gee, Biochemistry 50, 1799 (2011).CrossRefGoogle Scholar
  7. 7.
    M.P. Christie, A.E. Whitten, G.J. King, S.H. Hu, R.J. Jarrott, K.E. Chen, A.P. Duff, P. Callow, B.M. Collins, D.E. James, J.L. Martin, Proc. Natl. Acad. Sci. U.S.A. 109, 9816 (2012).ADSCrossRefGoogle Scholar
  8. 8.
    C. Ebel, F. Guinet, J. Langowski, C. Urbanke, J. Gagnon, G. Zaccai, J. Mol. Biol. 223, 361 (1992).CrossRefGoogle Scholar
  9. 9.
    L. Costenaro, G. Zaccai, C. Ebel, Biochemistry 41, 13245 (2002).CrossRefGoogle Scholar
  10. 10.
    C. Ebel, L. Costenaro, M. Pascu, P. Faou, B. Kernel, F. Proust-De Martin, G. Zaccai, Biochemistry 41, 13234 (2002).CrossRefGoogle Scholar
  11. 11.
    C. Ebel, G. Zaccai, J. Mol. Recognit. 17, 382 (2004).CrossRefGoogle Scholar
  12. 12.
    D.I. Svergun, Biol. Chem. 391, 737 (2010).CrossRefGoogle Scholar
  13. 13.
    K.S. Sharma, G. Durand, F. Gabel, P. Bazzacco, C. Le Bon, E. Billon-Denis, L.J. Catoire, J.L. Popot, C. Ebel, B. Pucci, Langmuir 28, 4625 (2012).CrossRefGoogle Scholar
  14. 14.
    M. Abla, G. Durand, C. Breyton, S. Raynal, C. Ebel, B. Pucci, J. Fluor. Chem. 134, 63 (2012).CrossRefGoogle Scholar
  15. 15.
    B. Jacrot, G. Zaccai, Biopolymers 20, 2413 (1981).CrossRefGoogle Scholar
  16. 16.
    G. Zaccai, B. Jacrot, Annu. Rev. Biophys. Bioeng. 12, 139 (1983).CrossRefGoogle Scholar
  17. 17.
    M.H. Koch, P. Vachette, D.I. Svergun, Q. Rev. Biophys. 36, 147 (2003).CrossRefGoogle Scholar
  18. 18.
    A.-J. Dianoux, G. Lander (Editors), Neutron Data Booklet (Institut Laue Langevin, Grenoble, 2002).Google Scholar
  19. 19.
    Y. Gohon, T. Dahmane, R.W. Ruigrok, P. Schuck, D. Charvolin, F. Rappaport, P. Timmins, D.M. Engelman, C. Tribet, J.-L. Popot, C. Ebel, Biophys. J. 94, 3523 (2008).ADSCrossRefGoogle Scholar
  20. 20.
    H. Eisenberg, Biological macromolecules and polyelectrolytes in solution, Monographs on Physical Biochemistry, edited by W.F. Harrington, A.R. Peacocke (Clarendon Press, Oxford, 1976) p. 272.Google Scholar
  21. 21.
    H. Eisenberg, Q. Rev. Biophys. 14, 141 (1981).CrossRefGoogle Scholar
  22. 22.
    C. Ebel, in Protein Interactions - Biophysical approaches for the study of Complex Reversible Systems, edited by P. Schuck (Springer, Berlin, 2007) p. 255.Google Scholar
  23. 23.
    H. Durchschlag, in Thermodynamic data for Biochemistry and Biotechnology, edited by H.-J. Hinz (Springer-Verlag, New-York, 1986) pp. 45-128.Google Scholar
  24. 24.
    H. Durchschlag, P. Zipper, Prog. Colloid Polym. Sci. 94, 20 (1994).CrossRefGoogle Scholar
  25. 25.
    S.J. Perkins, Eur. J. Biochem. 157, 169 (1986).CrossRefGoogle Scholar
  26. 26.
    H. Durchschlag, P. Zipper, J. Com. Est. Deterg. 26, 275 (1995).Google Scholar
  27. 27.
    H. Durchschlag, P. Zipper, J. Appl. Crystallogr. 30, 803 (1997).CrossRefGoogle Scholar
  28. 28.
    H. Durchschlag, P. Zipper, Biophys. Chem. 93, 141 (2001).CrossRefGoogle Scholar
  29. 29.
    E.L. Compton, E. Karinou, J.H. Naismith, F. Gabel, A. Javelle, J. Biol. Chem. 286, 27058 (2011).CrossRefGoogle Scholar
  30. 30.
    C. Breyton, F. Gabel, M. Abla, Y. Pierre, F. Lebaupain, G. Durand, J.-L. Popot, C. Ebel, B. Pucci, Biophys. J. 97, 1077 (2009).ADSCrossRefGoogle Scholar
  31. 31.
    D.I. Svergun, Biophys J. 76, 2879 (1999).ADSCrossRefGoogle Scholar
  32. 32.
    D.I. Svergun, S. Richard, M.H.J. Koch, Z. Sayers, S. Kuprin, G. Zaccai, Proc. Natl. Acad. Sci. U.S.A. 95, 2267 (1998).ADSCrossRefGoogle Scholar
  33. 33.
    D.I. Svergun, K.H. Nierhaus, J. Biol. Chem. 275, 14432 (2000).CrossRefGoogle Scholar
  34. 34.
    H.B. Stuhrmann, J. Appl. Crystallogr. 7, 173 (1974).CrossRefGoogle Scholar
  35. 35.
    A.E. Whitten, S.Z. Cai, J. Trewhella, J. Appl. Crystallogr. 41, 222 (2008).CrossRefGoogle Scholar
  36. 36.
    A. Pautsch, J. Vogt, K. Model, C. Siebold, G.E. Schulz, Proteins 34, 167 (1999).CrossRefGoogle Scholar
  37. 37.
    L. Arcemisbehere, T. Sen, L. Boudier, M.N. Balestre, G. Gaibelet, E. Detouillon, H. Orcel, C. Mendre, R. Rahmeh, S. Granier, C. Vives, F. Fieschi, M. Damian, T. Durroux, J.L. Baneres, B. Mouillac, J. Biol. Chem. 285, 6337 (2010).CrossRefGoogle Scholar
  38. 38.
    L. Plançon, C. Janmot, M. le Maire, M. Desmadril, M. Bonhivers, L. Letellier, P. Boulanger, J. Mol. Biol. 318, 557 (2002).CrossRefGoogle Scholar
  39. 39.
    A.D. Ferguson, J. Breed, K. Diederichs, W. Welte, J.W. Coulton, Protein Sci. 7, 1636 (1998).CrossRefGoogle Scholar
  40. 40.
    F. Junge, S. Haberstock, C. Roos, S. Stefer, D. Proverbio, V. Dotsch, F. Bernhard, N. Biotechnol. 28, 262 (2011).CrossRefGoogle Scholar
  41. 41.
    M. Lethier, M. Moulin, M. Härtlein, C. Ebel, Report on expression and purification of a deuterated model membrane protein OmpX, available on the web site of IBS: http://www.ibs.fr Then search: SSIMPAS.
  42. 42.
    A. Flayhan, F. Wien, M. Paternostre, P. Boulanger, C. Breyton, Biochimie 94, 1982 (2012).CrossRefGoogle Scholar
  43. 43.
    A.G. Salvay, M. Santamaria, M. le Maire, C. Ebel, J. Biol. Physics 33, 399 (2007).CrossRefGoogle Scholar
  44. 44.
    M. le Maire, B. Arnou, C. Olesen, D. Georgin, C. Ebel, J.V. Moller, Nat. Protoc. 3, 1782 (2008).CrossRefGoogle Scholar
  45. 45.
    H. Nury, F. Manon, B. Arnou, M. le Maire, E. Pebay-Peyroula, C. Ebel, Biochemistry 47, 12319 (2008).CrossRefGoogle Scholar
  46. 46.
    C. Ebel, Methods 54, 56 (2011).CrossRefGoogle Scholar
  47. 47.
    I. Dach, C. Olesen, L. Signor, P. Nissen, M. le Maire, J.V. Moller, C. Ebel, J. Biol. Chem. 287, 41963 (2012).CrossRefGoogle Scholar
  48. 48.
    A. Le Roy, H. Nury, B. Wiseman, J. Sarwan, J.-M. Jault, C. Ebel, in Membrane Biogenesis: methods and protocols (Springer-Humana Press, New York) in press.Google Scholar
  49. 49.
    J.F. Hunt, P.D. McCrea, G. Zaccai, D.M. Engelman, J. Mol. Biol. 273, 1004 (1997).CrossRefGoogle Scholar
  50. 50.
    Z. Bu, L. Wang, D.A. Kendall, J. Mol. Biol. 332, 23 (2003).CrossRefGoogle Scholar
  51. 51.
    J. Zimmer, D.A. Doyle, J.G. Grossmann, Biophys. J. 90, 1752 (2006).ADSCrossRefGoogle Scholar
  52. 52.
    A. Johs, M. Hammel, I. Waldner, R.P. May, I. Laggner, R. Prass, J. Biol. Chem. 281, 19732 (2006).CrossRefGoogle Scholar
  53. 53.
    V. Kumar, S.J. Butcher, K. Oorni, P. Engelhardt, J. Heikkonen, K. Kaski, M. Ala-Korpela, P.T. Kovanen, PLoS One 6, e18841 (2011).ADSCrossRefGoogle Scholar
  54. 54.
    M.B. Cardoso, D. Smolensky, W.T. Heller, H. O’Neill, J. Phys. Chem. B 113, 16377 (2009).CrossRefGoogle Scholar
  55. 55.
    K.H. Tang, V.S. Urban, J. Wen, Y. Xin, R.E. Blankenship, Biophys. J. 99, 2398 (2010).ADSCrossRefGoogle Scholar
  56. 56.
    A. Nogales, C. Garcia, J. Perez, P. Callow, T.A. Ezquerra, J. Gonzalez-Rodriguez, J. Biol. Chem. 285, 1023 (2010).CrossRefGoogle Scholar
  57. 57.
    Z. Wu, V. Gogonea, X. Lee, M.A. Wagner, X.M. Li, Y. Huang, A. Undurti, R.P. May, M. Haertlein, M. Moulin, I. Gutsche, G. Zaccai, J.A. Didonato, S.L. Hazen, J. Biol. Chem. 284, 36605 (2009).CrossRefGoogle Scholar
  58. 58.
    Z. Wu, V. Gogonea, X. Lee, R.P. May, V. Pipich, M.A. Wagner, A. Undurti, T.C. Tallant, C. Baleanu-Gogonea, F. Charlton, A. Ioffe, J.A. DiDonato, K.A. Rye, S.L. Hazen, J. Biol. Chem. 286, 12495 (2011).CrossRefGoogle Scholar
  59. 59.
    N. Skar-Gislinge, J.B. Simonsen, K. Mortensen, R. Feidenhans’l, S.G. Sligar, B.L. Moller, T. Bjornholm, L. Arleth, J. Am. Chem. Soc. 132, 13713 (2010).CrossRefGoogle Scholar
  60. 60.
    N. Skar-Gislinge, L. Arleth, Phys. Chem. Chem. Phys. 13, 3161 (2011).CrossRefGoogle Scholar
  61. 61.
    L.A. Clifton, C.L. Johnson, A.S. Solovyova, P. Callow, K.L. Weiss, H. Ridley, A.P. Le Brun, C.J. Kinane, J.R. Webster, S.A. Holt, J.H. Lakey, J. Biol. Chem. 287, 337 (2012).CrossRefGoogle Scholar
  62. 62.
    A. Berthaud, J. Manzi, J. Perez, S. Mangenot, J. Am. Chem. Soc. 134, 10080 (2012).CrossRefGoogle Scholar
  63. 63.
    B. Clantin, H. Hodak, E. Willery, C. Locht, F. Jacob-Dubuisson, V. Villeret, Proc. Natl. Acad. Sci. U.S.A. 101, 6194 (2004).ADSCrossRefGoogle Scholar
  64. 64.
    F. Gabel, M.F. Lensik, B. Clantin, F. Jacob-Dubuisson, V. Villeret, C. Ebel, in preparation.Google Scholar
  65. 65.
    C. Breyton, A. Flayhan, F. Gabel, M. Lethier, G. Durand, P. Boulanger, M. Chami, C. Ebel, submitted.Google Scholar
  66. 66.
    M. Dayah, Dynamic Periodic Table (1 October 1997). Retrieved 5 May 2012, from Ptable: http://www.ptable.com.
  67. 67.
    R.J. Gilbert, R.K. Heenan, P.A. Timmins, N.A. Gingles, T.J. Mitchell, A.J. Rowe, J. Rossjohn, M.W. Parker, P.W. Andrew, O. Byron, J. Mol. Biol. 293, 1145 (1999).CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Cécile Breyton
    • 1
    • 2
    • 3
  • Frank Gabel
    • 1
    • 2
    • 3
  • Mathilde Lethier
    • 1
    • 2
    • 3
  • Ali Flayhan
    • 1
    • 2
    • 3
  • Grégory Durand
    • 4
    • 5
  • Jean-Michel Jault
    • 1
    • 2
    • 3
  • Céline Juillan-Binard
    • 1
    • 2
    • 3
  • Lionel Imbert
    • 1
    • 2
    • 3
  • Martine Moulin
    • 6
    • 7
  • Stéphanie Ravaud
    • 1
    • 2
    • 3
  • Michael Härtlein
    • 6
    • 7
  • Christine Ebel
    • 1
    • 2
    • 3
  1. 1.Institut de Biologie Structurale (IBS)Univ. Grenoble AlpesGrenobleFrance
  2. 2.CEA, DSV, IBSGrenobleFrance
  3. 3.CNRS, IBSGrenobleFrance
  4. 4.Equipe Chimie Bioorganique et Systèmes AmphiphilesUniversité d’Avignon et des Pays de VaucluseAvignonFrance
  5. 5.Institut des Biomolécules Max MousseronUMR 5247 CNRS-Universités Montpellier 1 & 2MontpellierFrance
  6. 6.Institute Max Von Laue Paul LangevinGrenoble 9France
  7. 7.Partnership for Structural BiologyILL EMBL Deuteration LabGrenoble 9France

Personalised recommendations