Advertisement

Tuning the density profile of surface-grafted hyaluronan and the effect of counter-ions

  • Ida BertsEmail author
  • Giovanna Fragneto
  • Jöns Hilborn
  • Adrian R. Rennie
Regular Article
Part of the following topical collections:
  1. Neutron Biological Physics

Abstract

The present paper investigates the structure and composition of grafted sodium hyaluronan at a solid-liquid interface using neutron reflection. The solvated polymer at the surface could be described with a density profile that decays exponentially towards the bulk solution. The density profile of the polymer varied depending on the deposition protocol. A single-stage deposition resulted in denser polymer layers, while layers created with a two-stage deposition process were more diffuse and had an overall lower density. Despite the diffuse density profile, two-stage deposition leads to a higher surface excess. Addition of calcium ions causes a strong collapse of the sodium hyaluronan chains, increasing the polymer density near the surface. This effect is more pronounced on the sample prepared by two-stage deposition due to the initial less dense profile. This study provides an understanding at a molecular level of how surface functionalization alters the structure and how surface layers respond to changes in calcium ions in the solvent.

Graphical abstract

Keywords

Topical issue: Neutron Biological Physics 

Supplementary material

10189_2013_9884_MOESM1_ESM.doc (1.2 mb)
Supplementary material, approximately 1.16 MB.

References

  1. 1.
    E. Buhler, F. Boué, Eur. Phys. J. E 10, 89 (2003).CrossRefGoogle Scholar
  2. 2.
    Y. Tran, P. Auroy, Eur. Phys. J. E 5, 65 (2001).CrossRefGoogle Scholar
  3. 3.
    S.S. Praveen, R. Hanumantha, J.M. Belovich, B.L. Davis, Diabetes. Technol. Ther. 5, 393 (2003).CrossRefGoogle Scholar
  4. 4.
    B. Thierry, F.M. Winnik, Y. Merhi, J. Silver, M. Tabrizian, Biomacromolecules 4, 1564 (2003).CrossRefGoogle Scholar
  5. 5.
    T.A. Schmidt, N.S. Gastelum, Q.T. Nguyen, B.L. Schumacher, R.L. Sah, Arthritis Rheum. 56, 882 (2007).CrossRefGoogle Scholar
  6. 6.
    W. Senaratne, L. Andruzzi, C.K. Ober, Biomacromolecules 6, 2427 (2005).CrossRefGoogle Scholar
  7. 7.
    M. Morra, Biomacromolecules 6, 1205 (2005).CrossRefGoogle Scholar
  8. 8.
    N. Angelova, D. Hunkeler, Trends Biotechnol. 17, 409 (1999).CrossRefGoogle Scholar
  9. 9.
    J.H. Lee, H.B. Lee, J.D. Andrade, Prog. Polym. Sci. 20, 1043 (1995).CrossRefGoogle Scholar
  10. 10.
    M.A. Cohen Stuart, W.T.S. Huck, J. Genzer, M. Müller, C. Ober, M. Stamm, G.B. Sukhorukov, I. Szleifer, V.V. Tsukruk, M. Urban, F. Winnik, S. Zauscher, I. Luzinov, S. Minko, Nat. Mater 9, 101 (2010).ADSCrossRefGoogle Scholar
  11. 11.
    E. Buhler, F. Boué, Macromolecules 37, 1600 (2004).ADSCrossRefGoogle Scholar
  12. 12.
    R. Takahashi, K. Kubota, M. Kawada, A. Okamoto, Biopolymers 50, 87 (1999).CrossRefGoogle Scholar
  13. 13.
    R.A.L. Jones, R.W. Richards Polymers at Surfaces and Interfaces (Cambridge University Press, 1999).Google Scholar
  14. 14.
    S.T. Milner, T.A. Witten, M.E. Cates, Macromolecules 22, 853 (1989).ADSCrossRefGoogle Scholar
  15. 15.
    W.M. de Vos, F.A.M. Leermakers, Polymer 50, 305 (2009).CrossRefGoogle Scholar
  16. 16.
    V.M. Amoskov, T.M. Birshtein, A.A. Mercurieva, Macromol. Theory Simul. 15, 46 (2006).CrossRefGoogle Scholar
  17. 17.
    E.P.K. Currie, M. Wagemaker, M.A.C. Stuart, A.A. van Well, Physica B 283, 17 (2000).ADSCrossRefGoogle Scholar
  18. 18.
    K. Bergman, T. Engstrand, J. Hilborn, D. Ossipov, S. Piskounova, T. Bowden, J. Biomed. Mater. Res. A 91, 1111 (2009).CrossRefGoogle Scholar
  19. 19.
    S. Teixeira, G. Zaccai, J. Ankner, M. Bellissent-Funel, R. Bewley, M. Blakeley, P. Callow, L. Coates, R. Dahint, R. Dalgliesh, N. Dencher, V. Forsyth, G. Fragneto, B. Frick, R. Gilles, T. Gutberlet, M. Haertlein, T. Hauß, W. Häuß ler, W. Heller, K. Herwig, O. Holderer, F. Juranyi, R. Kampmann, R. Knott, S. Krueger, P. Langan, R. Lechner, G. Lynn, C. Majkrzak, R. May, F. Meilleur, Y. Mo, K. Mortensen, D. Myles, F. Natali, C. Neylon, N. Niimura, J. Ollivier, A. Ostermann, J. Peters, J. Pieper, A. Rühm, D. Schwahn, K. Shibata, A. Soper, T. Strässle, J. Suzuki, I. Tanaka, M. Tehei, P. Timmins, N. Torikai, T. Unruh, V. Urban, R. Vavrin, K. Weiss, Chem. Phys. 345, 133 (2008).ADSCrossRefGoogle Scholar
  20. 20.
    G. Fragneto-Cusani, J. Phys.: Condens. Matter 13, 4973 (2001).ADSCrossRefGoogle Scholar
  21. 21.
    R.K. Thomas, Annu. Rev. Phys. Chem. 55, 391 (2004).ADSCrossRefGoogle Scholar
  22. 22.
    G. Zaccai, Appl. Phys. A 74, 6 (2002).ADSCrossRefGoogle Scholar
  23. 23.
    K. Bergman, C. Elvingson, J. Hilborn, G. Svensk, T. Bowden, Biomacromolecules 8, 2190 (2007).CrossRefGoogle Scholar
  24. 24.
  25. 25.
    R.A. Stile, T.A. Barber, D.G. Castner, K.E. Healy, J. Biomed. Mater. Res. 61, 391 (2002).CrossRefGoogle Scholar
  26. 26.
    G.T. Hermanson, Bioconjugate Techniques (Academic Press, Carlifornia, 1996).Google Scholar
  27. 27.
    C.J. Powell, M.P. Seah, J. Vac. Sci. Technol. A 8, 735 (1990).ADSCrossRefGoogle Scholar
  28. 28.
    System specification for the PHI Quantum 2000 Scanning ESCA Microprobe (Physical Electronics, Eden Prairie, 2001).Google Scholar
  29. 29.
    R.M.A. Azzam, N.M. Bashara, Ellipsometry and Polarized Light (North Holland Publishing Company, 1977).Google Scholar
  30. 30.
    K. Suh, J. Yang, A. Khademhosseini, D. Berry, T. Tran, H. Park, R. Langer, J. Biomed. Mater. Res. B 72B, 292 (2005).CrossRefGoogle Scholar
  31. 31.
    J. Penfold, R.K. Thomas, J. Phys.: Condens. Matter 2, 1369 (1990).ADSCrossRefGoogle Scholar
  32. 32.
    R. Cubitt, G. Fragneto, Scattering in Microscopic Physics and Chemical Physics (Academic Press, London, 2002).Google Scholar
  33. 33.
    F. Abelès, J. Phys. (Paris) 11, 307 (1950).zbMATHGoogle Scholar
  34. 34.
    L. Névot, P. Croce, Rev. Phys. Appl. 15, 761 (1980).CrossRefGoogle Scholar
  35. 35.
    R. Cubitt, G. Fragneto, Appl. Phys. A 74, 329 (2002).ADSCrossRefGoogle Scholar
  36. 36.
    M.S. Hellsing, A.R. Rennie, L. Porcar, C.J. Englund, Prog. Colloid Polym. Sci. 138, 139 (2011).Google Scholar
  37. 37.
    C.A. Orme, J.L. Giocondi, Handbook of Biomineralization, Model Systems for Formation and Dissolution of Calcium Phosphate Minerals - Chapter 9: Model Systems for Formation and Dissolution of Calcium Phosphate Minerals (Wiley-VCH Verlag, Weinheim, United States, 2006).Google Scholar
  38. 38.
  39. 39.
    H.M. Kwaambwa, M. Hellsing, A.R. Rennie, Langmuir 26, 3902 (2010).CrossRefGoogle Scholar
  40. 40.
    F. Bonnet, R. Schweins, F. Boué, E. Buhler, EPL 83, 48002 (2008).CrossRefGoogle Scholar
  41. 41.
    D. Pasqui, A. Atrei, R. Barbucci, Biomacromolecules 8, 3531 (2007).CrossRefGoogle Scholar
  42. 42.
    V. Ball, P. Schaaf, J.C. Voegel, Biopolymers at Interfaces (Marcel Dekker, New York, 2003).Google Scholar
  43. 43.
    D.A. Gabriel, M.E. Carr, Am. J. Med. Sci. 298, 8 (1989).CrossRefGoogle Scholar
  44. 44.
    K. Haxaire, I. Braccini, M. Milas, M. Rinaudo, S. Pérez, Glycobiology 10, 587 (2000).CrossRefGoogle Scholar
  45. 45.
    J.C. Oberholtzer, S.W. Englander, A.F. Horwitz, FEBS Lett. 158, 305 (1983).CrossRefGoogle Scholar
  46. 46.
    S. Minko, Polym. Rev. 46, 397 (2006).Google Scholar
  47. 47.
    P.M. Claesson, E. Poptoshev, E. Blomberg, A. Dedinaite, Adv. Colloid Interface Sci. 114--115, 173 (2005).CrossRefGoogle Scholar
  48. 48.
    F. Horkay, A.M. Hecht, C. Rochas, P.J. Basser, E. Geissler, J. Chem. Phys. 125, 234904 (2006).ADSCrossRefGoogle Scholar
  49. 49.
    L. Szyk-Warszyńska, C. Gergely, E. Jarek, F. Cuisinier, R.P. Socha, P. Warszyński, Colloid. Surf. A 343, 118 (2009).CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ida Berts
    • 1
    • 2
    Email author
  • Giovanna Fragneto
    • 2
  • Jöns Hilborn
    • 1
  • Adrian R. Rennie
    • 3
  1. 1.Science for Life Laboratory, Department of Chemistry - Ångström LaboratoryUppsala UniversityUppsalaSweden
  2. 2.Institut Laue-LangevinGrenobleFrance
  3. 3.Department of Physics and Astronomy: Materials PhysicsUppsala UniversityUppsalaSweden

Personalised recommendations