Chemotaxis migration and morphogenesis of living colonies


Development of forms in living organisms is complex and fascinating. Morphogenetic theories that investigate these shapes range from discrete to continuous models, from the variational elasticity to time-dependent fluid approach. Here a mixture model is chosen to describe the mass transport in a morphogenetic gradient: it gives a mathematical description of a mixture involving several constituents in mechanical interactions. This model, which is highly flexible can incorporate many biological processes but also complex interactions between cells as well as between cells and their environment. We use this model to derive a free-boundary problem easier to handle analytically. We solve it in the simplest geometry: an infinite linear front advancing with a constant velocity. In all the cases investigated here as the 3 D diffusion, the increase of mitotic activity at the border, nonlinear laws for the uptake of morphogens or for the mobility coefficient, a planar front exists above a critical threshold for the mobility coefficient but it becomes unstable just above the threshold at long wavelengths due to the existence of a Goldstone mode. This explains why sparsely bacteria exhibit dendritic patterns experimentally in opposition to other colonies such as biofilms and epithelia which are more compact. In the most unstable situation, where all the laws: diffusion, chemotaxis driving and chemoattractant uptake are linear, we show also that the system can recover a dynamic stability. A second threshold for the mobility exists which has a lower value as the ratio between diffusion coefficients decreases. Within the framework of this model where the biomass is treated mainly as a viscous and diffusive fluid, we show that the multiplicity of independent parameters in real biologic experimental set-up may explain varieties of observed patterns.

Graphical abstract


  1. 1

    K.W. Rogers, A.F. Schier, Annu. Rev. Cell Dev. Biol. 27, 377 (2011)

  2. 2

    V. Sourjik, J.P. Armitage, EMBO j. 29, 2724 (2010)

  3. 3

    E. Ben-Jacob, H. Shmueli, O. Shochet, A. Tenenbaum, Physica A 187, 378 (1992)

  4. 4

    J.S. Langer, Rev. Mod. Phys. 52, 1 (1980)

  5. 5

    M. Ben Amar, Journ. Phys. I 3, 353 (1993)

  6. 6

    M. Ben Amar, E. Brener, Phys. Rev. Lett. 71, 589 (1993)

  7. 7

    Y. Couder, Growth patterns: from stable curved fronts to fractal structures, in Chaos, Order and Patterns, edited by R. Artuso, P. Cvitanovic, G. Casati (Plenum Press, 1991)

  8. 8

    M. Ben Amar, Phys. Rev. A 44, 3673 (1991)

  9. 9

    F. Argoul, E. Freysz, A. Kuhn, C. Lger, L. Potin, Phys. Rev. E 53, 1777 (1996)

  10. 10

    F. Argoul, E. Freysz, A. Kuhn, C. Lger, L. Potin, Phys. Rev. A 44, 3673 (1991)

  11. 11

    E. Ben-Jacob, H. Levine, J. R. Soc. Interface 3, 197 (2006)

  12. 12

    M. Reffay, L. Petitjean, S. Coscoy, E. Grasland-Mongrain, F. Amblard, A. Buguin, P. Silberzan, Biophys. J. 100, 2566 (2011)

  13. 13

    J.R. King, S.J. Franks, Mathematical Modeling of Biological Systems, Vol. 1, edited by A. Deutsch, L. Brusch, H.M. Byrne, G. Vries, H. Herzel (Birkhauser, 2007) p. 175

  14. 14

    J.S. Lowengrub et al., Nonlinearity 23, R1 (2010)

  15. 15

    M. Eisenbach, Bacterial Chemotaxis Encyclopedia of life Sciences (Nature Publishing Group, 2001) pp. 1-14

  16. 16

    A. Puliafito, L. Hufnagel, P. Neveu, S. Streichan, A. Sigal, D.K Fygenson, B.I. Shraiman, Proc. Nat. Acad. Sci. U.S.A. 109, 739 (2012)

  17. 17

    E.F. Keller, L.A. Segel, J. Theor. Biol. 26, 399 (1970)

  18. 18

    L. Corrias, B. Perthame, H. Zaag, Milan J. Math. 72, 1 (2004)

  19. 19

    J. Dolbeault, B. Perthame, C. R. Math. Acad. Sci. Paris 339, 611 (2004)

  20. 20

    M.A. Herrero, J. Velazquez, Journ. Math. Biol. 35, 177 (1996)

  21. 21

    L. Menten, M.I. Michaelis, Biochem. Z. 49, 333 (1913)

  22. 22

    J.B. Xavier, E. Martinez-Garcia, K.R. Foster, Amer. Naturalist 174, 1 (2009)

  23. 23

    P. Ciarletta, L. Foret, M. Ben Amar, J. R. Soc. Interface 9, 305 (2011)

  24. 24

    A. Saez, E. Anon, M. Ghibaudo, M.O. du Roure, J.-M. Di Meglio, P. Hersen, P. Silberzan, A. Buguin, B. Ladoux, J. Phys.: Condens. Matter 22, 19 (2010)

  25. 25

    S. Mark, R. Shlomovitz, N. Gov, S. Nir, M. Poujade, E. Grasland-Mongrain, P. Silberzan, Biophys. J. 98, 361 (2010)

  26. 26

    M. Doi, A. Onuki, J. Phys. II 2, 1631 (1992)

  27. 27

    G. Caginalp, P. Fife, Phys. Rev. B 33, 7792 (1986)

  28. 28

    G. Caginalp, Arch. Rach. Mech. Anal. 92, 205 (1986)

  29. 29

    J.W. Cahn, J.E. Hilliard, J. Chem. Phys. 28, 258 (1958)

  30. 30

    J.W. Cahn, J.E. Taylor, Acta Mettal. 42, 1045 (1994)

  31. 31

    M. Ben Amar, Phys. Fluids A 4, 2641 (1992)

  32. 32

    N. Kudryashov, Phys. Lett. A 342, 99 (2005)

  33. 33

    M. Hayek, Appl. Math. Comput. 218, 2407 (2011)

  34. 34

    O. Cochet-Escartin Dynamique de fermeture de blessures circulaires modèles: aspects expérimentaux et théoriques, PhD thesis of University Pierre et Marie Curie, Paris (Avril 2013)

  35. 35

    X. Trepat, Mi.R. Wasserman, T.E. Angelini, E. Millet, D.A. Weitz, J.P. Butler, Jeffrey J. Fredberg, Nat. Phys. 5, 426 (2009)

  36. 36

    X. Wang, T. Long, R.M. Ford, Biotech. Bioengin. 109, 1622 (2012)

  37. 37

    J. Dervaux, J.C. Magniez, A. Libchaber Growth and form of Bacillus subtilis biofilms, preprint (2012)

Download references

Author information

Correspondence to Martine Ben Amar.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Ben Amar, M. Chemotaxis migration and morphogenesis of living colonies. Eur. Phys. J. E 36, 64 (2013) doi:10.1140/epje/i2013-13064-5

Download citation


  • Topical issue: Physical constraints of morphogenesis and evolution