Protein packing defects “heat up” interfacial water

  • María Belén Sierra
  • Sebastián R. Accordino
  • J. Ariel Rodriguez-Fris
  • Marcela A. Morini
  • Gustavo A. Appignanesi
  • Ariel Fernández Stigliano
Regular Article


Ligands must displace water molecules from their corresponding protein surface binding site during association. Thus, protein binding sites are expected to be surrounded by non-tightly-bound, easily removable water molecules. In turn, the existence of packing defects at protein binding sites has been also established. At such structural motifs, named dehydrons, the protein backbone is exposed to the solvent since the intramolecular interactions are incompletely wrapped by non-polar groups. Hence, dehydrons are sticky since they depend on additional intermolecular wrapping in order to properly protect the structure from water attack. Thus, a picture of protein binding is emerging wherein binding sites should be both dehydrons rich and surrounded by easily removable water. In this work we shall indeed confirm such a link between structure and dynamics by showing the existence of a firm correlation between the degree of underwrapping of the protein chain and the mobility of the corresponding hydration water molecules. In other words, we shall show that protein packing defects promote their local dehydration, thus producing a region of “hot” interfacial water which might be easily removed by a ligand upon association.

Graphical abstract


Soft Matter: Interfacial Phenomena and Nanostructured Surfaces 


  1. 1.
    J. Qvist, M. Davidovic, D. Hamelberg, B. Halle, Proc. Natl. Acad. Sci. U.S.A. 105, 6296 (2008)ADSCrossRefGoogle Scholar
  2. 2.
    T. Young, R. Abel, B. Kim, B.J. Berne, R.A. Friesner, Proc. Natl. Acad. Sci. U.S.A. 104, 808 (2007)ADSCrossRefGoogle Scholar
  3. 3.
    C. Wang, B.J. Berne, R.A. Friesner, Proc. Natl. Acad. Sci. U.S.A. 108, 1326 (2011)ADSCrossRefGoogle Scholar
  4. 4.
    A. Fernández, H.A. Scheraga, Proc. Natl. Acad. Sci. U.S.A. 100, 113 (2003)ADSCrossRefGoogle Scholar
  5. 5.
    A. Fernández, R. Scott, Biophysical. J. 85, 1914 (2003)ADSCrossRefGoogle Scholar
  6. 6.
    A. Fernández, in Transformative Concepts for Drug Design: Target Wrapping Vol. 1 (Springer: Heidelberg, 2010) pp. 1-224Google Scholar
  7. 7.
    A. Fernández, R. Scott, Phys. Rev. Lett. 91, 018102 (2003)ADSCrossRefGoogle Scholar
  8. 8.
    A. Fernández, J. Chen, A. Crespo, J. Chem. Phys. 126, 245103 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    N. Pietrosemoli, A. Crespo, A. Fernández, J. Prot. Res. 6, 3519 (2007)CrossRefGoogle Scholar
  10. 10.
    A. Fernández, Nat. Biotech. 22, 1081 (2004)CrossRefGoogle Scholar
  11. 11.
    A. Fernández, M. Lynch, Nature 474, 502 (2011)CrossRefGoogle Scholar
  12. 12.
    E. Schulz, M. Frechero, G. Appignanesi, Ariel Fernández, PLoS ONE 5, e12844 (2010)CrossRefGoogle Scholar
  13. 13.
    S.R. Accordino, J.A. Rodríguez-Fris, G.A. Appignanesi, A. Fernández, Eur. Phys. J. E 35, 59 (2012) and arXiv:1108.2618v1 [cond-mat.soft]CrossRefGoogle Scholar
  14. 14.
    S.R. Accordino, M.A. Morini, M.B. Sierra, J.A. Rodríguez Fris, G.A. Appignanesi, A. Fernández, Proteins: Struct., Funct., Bioinf. 80, 1755 (2012)Google Scholar
  15. 15.
    R.A. Friesner et al., J. Med. Chem. 49, 6177 (2006)CrossRefGoogle Scholar
  16. 16.
    J.L. Kulp et al., JACS 133, 10740 (2011)CrossRefGoogle Scholar
  17. 17.
    S.R. Accordino, J.A. Rodríguez Fris, G.A. Appignanesi, PLoS ONE 8, e55123 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    P. Ball, Nature 423, 25 (2003)ADSCrossRefGoogle Scholar
  19. 19.
    W.L. Jorgensen, J. Chandrasekhar, J.D. Madura, R.W. Impey, M.L. Klein, J. Chem. Phys. 79, 926 (1983)ADSCrossRefGoogle Scholar
  20. 20.
    M.W. Mahoney, W.L. Jorgensen, J. Chem. Phys. 112, 8910 (2000)ADSCrossRefGoogle Scholar
  21. 21.
    D.A. Case, T.A. Darden, T.E. Cheatham, III, C.L. Simmerling, J. Wang, R.E. Duke, R. Luo, R.C. Walker, W. Zhang, K.M. Merz, B.P. Roberts, B. Wang, S. Hayik, A. Roitberg, G. Seabra, I. Kolossvry, K.F. Wong, F. Paesani, J. Vanicek, J. Liu, X. Wu, S.R. Brozell, T. Steinbrecher, H. Gohlke, Q. Cai, X. Ye, J. Wang, M.-J. Hsieh, G. Cui, D.R. Roe, D.H. Mathews, M.G. Seetin, C. Sagui, V. Babin, T. Luchko, S. Gusarov, A. Kovalenko, P.A. Kollman, AMBER 11, University of California, San Francisco (2010)Google Scholar
  22. 22.
    H. Zhong, H.A. Carlson, Proteins: Struct. Funct. Bioinf. 58, 222 (2005)CrossRefGoogle Scholar
  23. 23.
    D.C. Malaspina, E.P. Schulz, L.M. Alarcón, M.A. Frechero, G.A. Appignanesi, Eur. Phys. J. E 32, 35 (2010)CrossRefGoogle Scholar
  24. 24.
    S.R. Accordino, D.C. Malaspina, J.A. Rodríguez Fris, G.A. Appignanesi, Phys. Rev. Lett. 106, 029801 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    S.R. Accordino, D.C. Malaspina, J.A. Rodriguez Fris, L.M. Alarcón, G.A. Appignanesi, Phys. Rev. E 85, 031503 (2012)ADSCrossRefGoogle Scholar
  26. 26.
    A.R. Bizzarri, S. Cannistraro, J. Phys. Chem. B 106, 6617 (2002)CrossRefGoogle Scholar
  27. 27.
    A.R. Bizzarri, A. Paciaroni, S. Cannistraro, Phys. Rev. E 62, 3991 (2000)ADSCrossRefGoogle Scholar
  28. 28.
    P. Kumar, Z. Yan, L. Xu, M.G. Mazza, S.V. Buldyrev, S.-H. Chen, S. Sastry, H.E. Stanley, Phys. Rev. Lett. 97, 177802 (2006)ADSCrossRefGoogle Scholar
  29. 29.
    P.G. Debenedetti, Metastable Liquids (Princeton University Press, Princeton, NJ, 1996)Google Scholar
  30. 30.
    O. Mishima, H.E. Stanley, Nature 396, 329 (1998)ADSCrossRefGoogle Scholar
  31. 31.
    C.A. Angell, Chem. Rev. 102, 2627 (2002)CrossRefGoogle Scholar
  32. 32.
    C.A. Angell, Annu. Rev. Phys. Chem. 55, 559 (2004)ADSCrossRefGoogle Scholar
  33. 33.
    E. Shiratani, M. Sasai, J. Chem. Phys. 104, 7671 (1996)ADSCrossRefGoogle Scholar
  34. 34.
    E. Shiratani, M. Sasai, J. Chem. Phys. 108, 3264 (1998)ADSCrossRefGoogle Scholar
  35. 35.
    H.-G. Heide, Ultramicroscopy 14, 271 (1984)CrossRefGoogle Scholar
  36. 36.
    T. Loerting, N. Giovambattista, J. Phys.: Condens. Matter 18, 919 (2006)ADSCrossRefGoogle Scholar
  37. 37.
    F. Sciortino, H. Geiger, H.E. Stanley, Phys. Rev. Lett. 65, 3452 (1990)ADSCrossRefGoogle Scholar
  38. 38.
    J.A. Rodriguez Fris, G.A. Appignanesi, E. La Nave, F. Sciortino, Phys. Rev. E 75, 041501 (2007)ADSCrossRefGoogle Scholar
  39. 39.
    G.A. Appignanesi, J.A. Rodriguez Fris, F. Sciortino, Eur. Phys. J. E 29, 305 (2009)CrossRefGoogle Scholar
  40. 40.
    S.R. Accordino, J.A. Rodriguez Fris, F. Sciortino, G.A. Appignanesi, Eur. Phys. J. E 34, 48 (2011)CrossRefGoogle Scholar
  41. 41.
    J.R. Errington, P.G. Debenedetti, Nature 409, 318 (2001)ADSCrossRefGoogle Scholar
  42. 42.
    D.C. Malaspina, J.A. Rodríguez Fris, G.A. Appignanesi, F. Sciortino, Europhys. Lett. 88, 16003 (2009)ADSCrossRefGoogle Scholar
  43. 43.
    G.A. Appignanesi, J.A. Rodríguez-Fris, R.A. Montani, W. Kob, Phys. Rev. Lett. 96, 057801 (2006)ADSCrossRefGoogle Scholar
  44. 44.
    G.A. Appignanesi, J.A. Rodríguez-Fris, M.A. Frechero, Phys. Rev. Lett. 96, 237803 (2006)ADSCrossRefGoogle Scholar
  45. 45.
    L.M. Iakoucheva, A.K. Dunker, Structure (London) 11, 1316 (2003)CrossRefGoogle Scholar
  46. 46.
    A.K. Dunker, Z. Obradovic, Z. Nat. Biotechnol. 19, 805 (2001)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • María Belén Sierra
    • 1
  • Sebastián R. Accordino
    • 1
  • J. Ariel Rodriguez-Fris
    • 1
  • Marcela A. Morini
    • 1
  • Gustavo A. Appignanesi
    • 1
  • Ariel Fernández Stigliano
    • 2
    • 3
  1. 1.Sección Fisicoquímica, INQUISUR-UNS-CONICET-Departamento de QuímicaUniversidad Nacional del SurBahía BlancaArgentina
  2. 2.Instituto Argentino de Matemática “Alberto P. Calderón”, CONICET (National Research Council)Buenos AiresArgentina
  3. 3.Collegium BasileaInstitute for Advanced StudyBaselSwitzerland

Personalised recommendations