Glassy dynamics of soft matter under 1D confinement: How irreversible adsorption affects molecular packing, mobility gradients and orientational polarization in thin films
- 822 Downloads
- 87 Citations
Abstract
The structural dynamics of polymers and simple liquids confined at the nanometer scale has been intensively investigated in the last two decades in order to test the validity of theories on the glass transition predicting a characteristic length scale of a few nanometers. Although this goal has not yet been reached, the anomalous behavior displayed by some systems --e.g. thin films of polystyrene exhibit reductions of Tg exceeding 70K and a tremendous increase in the elastic modulus-- has attracted a broad community of researchers, and provided astonishing advancement of both theoretical and experimental soft matter physics. 1D confinement is achieved in thin films, which are commonly treated as systems at thermodynamic equilibrium where free surfaces and solid interfaces introduce monotonous mobility gradients, extending for several molecular sizes. Limiting the discussion to finite-size and interfacial effects implies that film thickness and surface interactions should be sufficient to univocally determine the deviation from bulk behavior. On the contrary, such an oversimplified picture, although intuitive, cannot explain phenomena like the enhancement of segmental mobility in proximity of an adsorbing interface, or the presence of long-lasting metastable states in the liquid state. Based on our recent work, we propose a new picture on the dynamics of soft matter confined in ultrathin films, focusing on non-equilibrium and on the impact of irreversibly chain adsorption on the structural relaxation. We describe the enhancement of dynamics in terms of the excess in interfacial free volume, originating from packing frustration in the adsorbed layer (Guiselin brush) at t * ≪ 1 , where t* is the ratio between the annealing time and the time scale of adsorption. Prolonged annealing at times exceeding the reptation time (usually t * ≫ 1 induces densification, and thus reduces the deviation from bulk behavior. In this Colloquium, after reviewing the experimental approaches permitting to investigate the structural relaxation of films with one, two or no free surfaces by means of dielectric spectroscopy, we propose several methods to determine gradients of mobility in thin films, and then discuss on the unexploited potential of analyses based on the time, temperature and thickness dependence of the orientational polarization via the dielectric strength.
Graphical abstract
Keywords
Soft Matter: Polymers and PolyelectrolytesReferences
- 1.M. Alcoutlabi, G.B. McKenna, J. Phys.: Condens. Matter 17, R461 (2005)ADSGoogle Scholar
- 2.G. Adam, J.H. Gibbs, J. Chem. Phys. 43, 139 (1965)ADSGoogle Scholar
- 3.V. Lubchenko, P.G. Wolynes, in Annual Review of Physical Chemistry Vol. 58 (Annual Reviews, Palo Alto, 2007) pp. 235Google Scholar
- 4.H. Shintani, H. Tanaka, Nat. Phys. 2, 200 (2006)Google Scholar
- 5.H. Tanaka, T. Kawasaki, H. Shintani, K. Watanabe, Nat. Mater. 9, 324 (2010)ADSGoogle Scholar
- 6.H. Tanaka, Eur. Phys. J. E 35, 113 (2012)Google Scholar
- 7.Differently from the RFOT theory, where the formation of the droplets is driven by configurational entropy alone, the TOP model predicts that the formation of MRCOs is induced by two simultaneous processes: the maximization of the density of the system and the maximization concentration of intermolecular bondsGoogle Scholar
- 8.J.A. Forrest, J. Mattsson, Phys. Rev. E 61, R53 (2000)ADSGoogle Scholar
- 9.X. Zheng, M.H. Rafailovich, J. Sokolov, Y. Strzhemechny, S.A. Schwarz, B.B. Sauer, M. Rubinstein, Phys. Rev. Lett. 79, 241 (1997)ADSGoogle Scholar
- 10.C.J. Ellison, J.M. Torkelson, Nat. Mater. 2, 695 (2003)ADSGoogle Scholar
- 11.C. Rotella, S. Napolitano, L. De Cremer, G. Koeckelberghs, M. Wübbenhorst, Macromolecules 43, 8686 (2010)ADSGoogle Scholar
- 12.R.D. Priestley, C.J. Ellison, L.J. Broadbelt, J.M. Torkelson, Science 309, 456 (2005)ADSGoogle Scholar
- 13.E. Donth, The Glass Transition, Relaxation Dynamics in Liquids and Disordered Materials (Springer-Verlag, New York, 2001)Google Scholar
- 14.G.B. DeMaggio, W.E. Frieze, D.W. Gidley, M. Zhu, H.A. Hristov, A.F. Yee, Phys. Rev. Lett. 78, 1524 (1997)ADSGoogle Scholar
- 15.K. Fukao, Y. Miyamoto, Phys. Rev. E 61, 1743 (2000)ADSGoogle Scholar
- 16.S. Napolitano, D. Prevosto, M. Lucchesi, P. Pingue, M. D'Acunto, P. Rolla, Langmuir 23, 2103 (2007)Google Scholar
- 17.Z. Fakhraai, J.A. Forrest, Science 319, 600 (2008)Google Scholar
- 18.S. Napolitano, C. Rotella, M. Wübbenhorst, Acs Macro Lett. 1, 1189 (2012)Google Scholar
- 19.S. Napolitano, A. Pilleri, P. Rolla, M. Wübbenhorst, Acs Nano 4, 841 (2010)Google Scholar
- 20.J.J. Hernandez, D.R. Rueda, M.C. Garcia-Gutierrez, A. Nogales, T.A. Ezquerra, M. Soccio, N. Lotti, A. Munari, Langmuir 26, 10731 (2010)Google Scholar
- 21.D.R. Rueda, J.J. Hernandez, M.C. Garcia-Gutierrez, T.A. Ezquerra, M. Soccio, N. Lotti, A. Munari, J. Perlich, R. Serna, Langmuir 26, 17540 (2010)Google Scholar
- 22.D.R. Rueda, A. Nogales, J.J. Hernandez, M.-C. Garcia-Gutierrez, T.A. Ezquerra, S.V. Roth, M.G. Zolotukhin, R. Serna, Langmuir 23, 12677 (2007)Google Scholar
- 23.S. Napolitano, M. Wübbenhorst, Nat. Commun. 2, 260 (2011)ADSGoogle Scholar
- 24.A. Serghei, F. Kremer, Macrom. Chem. Phys. 209, 810 (2008)Google Scholar
- 25.H.Y. Lu, W. Chen, T.P. Russell, Macromolecules 42, 9111 (2009)ADSGoogle Scholar
- 26.B. Frieberg, E. Glynos, G. Sakellariou, P.F. Green, Acs Macro Lett. 1, 636 (2012)Google Scholar
- 27.B. Frieberg, E. Glynos, P.F. Green, Phys. Rev. Lett. 108, (2012)Google Scholar
- 28.E. Glynos, B. Frieberg, H. Oh, M. Liu, D.W. Gidley, P.F. Green, Phys. Rev. Lett. 106, (2011)Google Scholar
- 29.Z.H. Yang, Y. Fujii, F.K. Lee, C.H. Lam, O.K.C. Tsui, Science 328, 1676 (2010)ADSGoogle Scholar
- 30.D. Qi, Z. Fakhraai, J.A. Forrest, Phys. Rev. Lett. 101, (2008)Google Scholar
- 31.C.R. Daley, Z. Fakhraai, M.D. Ediger, J.A. Forrest, Soft Matter 8, 2206 (2012)ADSGoogle Scholar
- 32.H.K. Nguyen, M. Labardi, S. Capaccioli, M. Lucchesi, P. Rolla, D. Prevosto, Macromolecules 45, 2138 (2012)ADSGoogle Scholar
- 33.J.E.G. Lipson, S.T. Milner, Eur. Phys. J. B 72, 133 (2009)ADSGoogle Scholar
- 34.V.M. Boucher, D. Cangialosi, H.J. Yin, A. Schonhals, A. Alegria, J. Colmenero, Soft Matter 8, 5119 (2012)ADSGoogle Scholar
- 35.J.C. Maxwell, Philos. Trans. R. Soc. London 157, 49 (1867)Google Scholar
- 36.P.G. Debenedetti, F.H. Stillinger, Nature 410, 259 (2001)ADSGoogle Scholar
- 37.J.C. Dyre, Rev. Mod. Phys. 78, 953 (2006)ADSGoogle Scholar
- 38.L. Larini, A. Ottochian, C. De Michele, D. Leporini, Nat. Phys. 4, 42 (2008)Google Scholar
- 39.K. Watanabe, T. Kawasaki, H. Tanaka, Nat. Mater. 10, 512 (2011)ADSGoogle Scholar
- 40.K. Ngai, Relaxation and Diffusion in Complex Systems (Springer, Berlin, 2011)Google Scholar
- 41.C. Bottcher, Theory of Dielectric Polarization (Elsevier Scientific Publishing Company, Amsterdam, 1973)Google Scholar
- 42.J. Runt, F.J. Fitzgerald, Dielectric Spectroscopy of Polymeric Materials: Fundamentals and Applications (American Chemical Society, 1997)Google Scholar
- 43.F. Kremer, A. Schoenhals, Broadband Dielectric Spectroscopy (Springer, Berlin, 2003)Google Scholar
- 44.A. Schonhals, E. Schlosser, Colloid Polym. Sci. 267, 125 (1989)Google Scholar
- 45.G. Tamman, G.Z. Hesse, Anorg. Alleg. Chem. 156, 245 (1926)Google Scholar
- 46.G.S. Fulcher, J. Am. Ceram. Soc. 8, 339 (1925)Google Scholar
- 47.H.Z. Vogel, Phys. Z. 22, 645 (1921)Google Scholar
- 48.S. Havriliak, S. Negami, Polymer 8, 161 (1967)Google Scholar
- 49.P. Bebin, R.E. Prud'homme, Chem. Mater. 15, 965 (2003)Google Scholar
- 50.G. Blum, F. Kremer, T. Jaworek, G. Wegner, Adv. Mater. 7, 1017 (1995)Google Scholar
- 51.A. Serghei, F. Kremer, Rev. Sci. Instrum. 77, 116108 (2006)ADSGoogle Scholar
- 52.E.U. Mapesa, M. Erber, M. Tress, K.J. Eichhorn, A. Serghei, B. Voit, F. Kremer, Eur. Phys. J. ST 189, 173 (2010)Google Scholar
- 53.C. Rotella, S. Napolitano, M. Wübbenhorst, Macromolecules 42, 1415 (2009)ADSGoogle Scholar
- 54.M.C. Scott, D.R. Stevens, J.R. Bochinski, L.I. Clarke, ACS Nano 2, 2392 (2008)Google Scholar
- 55.S. Capponi, S. Napolitano, N.R. Behrnd, G. Couderc, J. Hulliger, M. Wübbenhorst, J. Phys. Chem. C 114, 16696 (2010)Google Scholar
- 56.M. Wübbenhorst, S. Capponi, S. Napolitano, S. Rozanski, G. Couderc, N.R. Behrnd, J. Hulliger, Eur. Phys. J. ST 189, 181 (2010)Google Scholar
- 57.S. Capponi, S. Napolitano, M. Wübbenhorst, Nat. Commun. 3, 1233 (2012)ADSGoogle Scholar
- 58.M.W. den Otter, Sensors, Actuators A: Phys. 96, 140 (2002)Google Scholar
- 59.S. Peter, S. Napolitano, H. Meyer, M. Wübbenhorst, J. Baschnagel, Macromolecules 41, 7729 (2008)ADSGoogle Scholar
- 60.P.S. Crider, M.R. Majewski, Z. Jingyun, H. Oukris, N.E. Israeloff, Appl. Phys. Lett. 91, 013102 (2007)ADSGoogle Scholar
- 61.M. Labardi, D. Prevosto, K.H. Nguyen, S. Capaccioli, M. Lucchesi, P. Rolla, J. Vac. Sci. Technol. B 28, C4D11 (2010)Google Scholar
- 62.T.R. Albrecht, P. Grutter, D. Horne, D. Rugar, J. Appl. Phys. 69, 668 (1991)ADSGoogle Scholar
- 63.G. A. Schwartz, C. Riedel, R. Arinero, P. Tordjeman, A. Alegria, J. Colmenero, Ultramicroscopy 111, 1366 (2011)Google Scholar
- 64.H.K. Nguyen, M. Labardi, M. Lucchesi, P. Rolla, D. Prevosto, Macromolecules 46, 555 (2013)ADSGoogle Scholar
- 65.C. Rotella, M. Wübbenhorst, S. Napolitano, Soft Matter 7, 5260 (2011)ADSGoogle Scholar
- 66.P. Scheidler, W. Kob, K. Binder, Europhys. Lett. 59, 701 (2002)ADSGoogle Scholar
- 67.P. Scheidler, W. Kob, K. Binder, J. Phys. Chem. B 108, 6673 (2004)Google Scholar
- 68.D.S. Fryer, R.D. Peters, E.J. Kim, J.E. Tomaszewski, J.J. de Pablo, P.F. Nealey, C.C. White, W.L. Wu, Macromolecules 34, 5627 (2001)ADSGoogle Scholar
- 69.C.J. Vanoss, M.K. Chaudhury, R.J. Good, Chem. Rev. 88, 927 (1988)Google Scholar
- 70.D. Labahn, R. Mix, A. Schoenhals, Phys. Rev. E 79, 011801 (2009)ADSGoogle Scholar
- 71.H. Yin, S. Napolitano, A. Schoenhals, Macromolecules 45, 1652 (2012)ADSGoogle Scholar
- 72.C. Rotella, S. Napolitano, S. Vandendriessche, V.K. Valev, T. Verbiest, M. Larkowska, S. Kucharski, M. Wübbenhorst, Langmuir 27, 13533 (2011)Google Scholar
- 73.B. Vanroy, M. Wübbenhorst, S. Napolitano, Acs Macro Lett. 2, 168 (2013)Google Scholar
- 74.O. Guiselin, Europhys. Lett. 17, 225 (1991)ADSGoogle Scholar
- 75.C.J. Durning, B. O'Shaughnessy, U. Sawhney, D. Nguyen, J. Majewski, G.S. Smith, Macromolecules 32, 6772 (1999)ADSGoogle Scholar
- 76.J.F. Douglas, H.M. Schneider, P. Frantz, R. Lipman, S. Granick, J. Phys.: Condens. Matter 9, 7699 (1997)ADSGoogle Scholar
- 77.S. Granick, Eur. Phys. J. E 9, 421 (2002)Google Scholar
- 78.P. Linse, Soft Matter 8, 5140 (2012)ADSGoogle Scholar
- 79.C. Ligoure, L. Leibler, J. Phys. (Paris) 51, 1313 (1990)Google Scholar
- 80.P. Gin, N. Jiang, C. Liang, T. Taniguchi, B. Akgun, S.K. Satija, M.K. Endoh, T. Koga, Phys. Rev. Lett. 109, (2012)Google Scholar
- 81.S. Napolitano, M. Wübbenhorst, Macromolecules 39, 5967 (2006)ADSGoogle Scholar
- 82.K.L. Ngai, J. Phys. Chem. B 110, 26211 (2006)Google Scholar
- 83.C. Bauer, R. Bohmer, S. Moreno-Flores, R. Richert, H. Sillescu, D. Neher, Phys. Rev. E 61, 1755 (2000)ADSGoogle Scholar
- 84.S. Srivastava, J.K. Basu, Phys. Rev. Lett. 98, (2007)Google Scholar
- 85.J. Xu, D.W. Li, J. Chen, L. Din, X.L. Wang, F.F. Tao, G. Xue, Macromolecules 44, 7445 (2011)ADSGoogle Scholar
- 86.B.M.I. Flier, M. Baier, J. Huber, K. Muellen, S. Mecking, A. Zumbusch, D. Woell, Phys. Chem. Chem. Phys. 13, 1770 (2011)Google Scholar
- 87.B.M.I. Flier, M.C. Baier, J. Huber, K. Mullen, S. Mecking, A. Zumbusch, D. Woll, J. Am. Chem. Soc. 134, 480 (2012)Google Scholar
- 88.N.B. Tito, J.E.G. Lipson, S.T. Milner, Soft Matter 9, 3173 (2013)ADSGoogle Scholar
- 89.P.G. de Gennes, Eur. Phys. J. E 2, 201 (2000)Google Scholar
- 90.D. Cangialosi, M. Wübbenhorst, J. Groenewold, E. Mendes, H. Schut, A. van Veen, S.J. Picken, Phys. Rev. B 70, (2004)Google Scholar
- 91.V.M. Boucher, D. Cangialosi, A. Alegria, J. Colmenero, I. Pastoriza-Santos, L.M. Liz-Marzan, Soft Matter 7, 3607 (2011)ADSGoogle Scholar
- 92.D. Cangialosi, V.M. Boucher, A. Alegria, J. Colmenero, J. Chem. Phys. 135, (2011)Google Scholar
- 93.V. M. Boucher, D. Cangialosi, A. Alegria, J. Colmenero, Macromolecules 45, 5296 (2012)Google Scholar
- 94.D. Cangialosi, V.M. Boucher, A. Alegria, J. Colmenero, Polymer 53, 1362 (2012)Google Scholar
- 95.M.S. McCaig, D.R. Paul, J.W. Barlow, Polymer 41, 639 (2000)Google Scholar
- 96.A.W. Thornton, A.J. Hill, Indust. Engin. Chem. Res. 49, 12119 (2010)Google Scholar
- 97.S. Napolitano, C. Rotella, M. Wübbenhorst, Macromol. Rapid Commun. 32, 844 (2011)Google Scholar
- 98.P. Rittigstein, R.D. Priestley, L.J. Broadbelt, J.M. Torkelson, Nat. Mater. 6, 278 (2007)ADSGoogle Scholar
- 99.Z. Jiang, H. Kim, X. Jiao, H. Lee, Y.J. Lee, Y. Byun, S. Song, D. Eom, C. Li, M.H. Rafailovich, L.B. Lurio, S.K. Sinha, Phys. Rev. Lett. 98, (2007)Google Scholar
- 100.G. Reiter, S. Napolitano, J. Polym. Sci. Part B-Polym. Phys. 48, 2544 (2010)ADSGoogle Scholar
- 101.G. Reiter, P.G. de Gennes, Eur. Phys. J. E 6, 25 (2001)Google Scholar
- 102.G. Reiter, M. Hamieh, P. Damman, S. Sclavons, S. Gabriele, T. Vilmin, E. Raphael, Nat. Mater. 4, 754 (2005)ADSGoogle Scholar
- 103.D.R. Barbero, U. Steiner, Phys. Rev. Lett. 102, 248303 (2009)ADSGoogle Scholar
- 104.K.R. Thomas, A. Chenneviere, G. Reiter, U. Steiner, Phys. Rev. E 83, (2011)Google Scholar
- 105.R.N. Li, A. Clough, Z. Yang, O.K.C. Tsui, Macromolecules 45, 1085 (2012)ADSGoogle Scholar
- 106.H. Richardson, I. Lopez-Garcia, M. Sferrazza, J.L. Keddie, Phys. Rev. E 70, (2004)Google Scholar
- 107.H. Richardson, M. Sferrazza, J.L. Keddie, Eur. Phys. J. E 12, S87 (2003)Google Scholar
- 108.T.N. Liang, Z.Q. Zhang, T. Li, X.Z. Yang, Polymer 45, 1365 (2004)Google Scholar
- 109.C. Teng, Y. Gao, X. Wang, W. Jiang, C. Zhang, R. Wang, D. Zhou, G. Xue, Macromolecules 45, 6648 (2012)ADSGoogle Scholar
- 110.G.J. Fleer, M.A. Cohen Stuart, J.M.H.M. Scheutjens, T. Cosgrove, B. Vincent, Polymer at Interfaces (Chapman & Hall, London, 1998)Google Scholar
- 111.M.M. Santore, Curr. Opin. Colloid Interface Sci. 10, 176 (2005)Google Scholar
- 112.R. Zajac, A. Chakrabarti, Phys. Rev. E 52, 6536 (1995)ADSGoogle Scholar
- 113.H.M. Schneider, P. Frantz, S. Granick, Langmuir 12, 994 (1996)Google Scholar
- 114.T.Z. Fu, U. Stimming, C.J. Durning, Macromolecules 26, 3271 (1993)ADSGoogle Scholar
- 115.J. Baschnagel, K. Binder, Macromolecules 28, 6808 (1995)ADSGoogle Scholar
- 116.S. Peter, H. Meyer, J. Baschnagel, J. Polym. Sci. Part B-Polym. Phys. 44, 2951 (2006)ADSGoogle Scholar
- 117.S. Napolitano, M. Wübbenhorst, J. Phys. Chem. B 111, 9197 (2007)Google Scholar
- 118.S. Napolitano, M. Wübbenhorst, J. Phys. Chem. B 111, 5775 (2007)Google Scholar
- 119.Z. Fakhraai, J.A. Forrest, Phys. Rev. Lett. 95, (2005)Google Scholar
- 120.S. Napolitano, V. Lupascu, M. Wübbenhorst, Macromolecules 41, 1061 (2008)ADSGoogle Scholar
- 121.R. Casalini, S. Capaccioli, M. Lucchesi, P.A. Rolla, M. Paluch, S. Corezzi, D. Fioretto, Phys. Rev. E 6404, (2001)Google Scholar
- 122.S. Corezzi, D. Fioretto, P. Rolla, Nature 420, 653 (2002)ADSGoogle Scholar
- 123.J. Martin, C. Mijangos, A. Sanz, T.A. Ezquerra, A. Nogales, Macromolecules 42, 5395 (2009)ADSGoogle Scholar
- 124.A.A. Levchenko, P. Jain, O. Trofymluk, P. Yu, A. Navrotsky, S. Sen, J. Phys. Chem. B 114, 3070 (2010)Google Scholar
- 125.S. Napolitano, M. Wübbenhorst, J. Phys. Chem. B 111, 5775 (2007)Google Scholar
- 126.K. Fukao, T. Terasawa, Y. Oda, K. Nakamura, D. Tahara, Phys. Rev. E 84, (2011)Google Scholar
- 127.K.L. Ngai, Eur. Phys. J. E 8, 225 (2002)Google Scholar
- 128.C.J. Ellison, J.M. Torkelson, Nat. Mater. 2, 695 (2003)ADSGoogle Scholar
- 129.F. Dinelli, A. Ricci, T. Sgrilli, P. Baschieri, P. Pingue, M. Puttaswamy, P. Kingshott, Macromolecules 44, 987 (2011)ADSGoogle Scholar
- 130.F. Dinelli, T. Sgrilli, A. Ricci, P. Baschieri, P. Pingue, M. Puttaswamy, P. Kingshott, to be published in J. Polym. Sci. Part B-Polym. Phys., DOI:10.1002/polb.23310
- 131.T. Koga, N. Jiang, P. Gin, M.K. Endoh, S. Narayanan, L.B. Lurio, S.K. Sinha, Phys. Rev. Lett. 107, (2011)Google Scholar
- 132.A. Serghei, M. Tress, F. Kremer, J. Chem. Phys. 131, (2009)Google Scholar
- 133.S. Napolitano, M. Wübbenhorst, Polymer 51, 5309 (2010)Google Scholar
- 134.C. Alvarez, I. Sics, A. Nogales, Z. Denchev, S.S. Funari, T.A. Ezquerra, Polymer 45, 3953 (2004)Google Scholar
- 135.S. Napolitano, M. Wübbenhorst, J. Non-Cryst. Solids 353, 4357 (2007)ADSGoogle Scholar
- 136.S. Napolitano, M. Wübbenhorst, J. Phys.: Condens. Matter 19, 205121 (2007)ADSGoogle Scholar
- 137.P. Lunkenheimer, A. Pimenov, B. Schiener, R. Bohmer, A. Loidl, Europhys. Lett. 33, 611 (1996)ADSGoogle Scholar
- 138.U. Schneider, P. Lunkenheimer, R. Brand, A. Loidl, J. Non-Cryst. Solids 235, 173 (1998)ADSGoogle Scholar
- 139.C.B. Roth, J.M. Torkelson, Macromolecules 40, 3328 (2007)ADSGoogle Scholar
- 140.J.E. Pye, C.B. Roth, Phys. Rev. Lett. 107, (2011)Google Scholar
- 141.J.A. Forrest, K. Dalnoki-Veress, J.R. Stevens, J.R. Dutcher, Phys. Rev. Lett. 77, 2002 (1996)ADSGoogle Scholar
- 142.S. Kim, C.B. Roth, J.M. Torkelson, J. Polym. Sci. Part B-Polym. Phys. 46, 2754 (2008)ADSGoogle Scholar
- 143.S. Kawana, R.A.L. Jones, Phys. Rev. E 63, 021501 (2001)ADSGoogle Scholar
- 144.S. Kim, J.M. Torkelson, Macromolecules 44, 4546 (2011)ADSGoogle Scholar
- 145.K. Paeng, S.F. Swallen, M.D. Ediger, J. Am. Chem. Soc. 133, 8444 (2011)Google Scholar
- 146.J. Hintermeyer, A. Herrmann, R. Kahlau, C. Goiceanu, E.A. Rossler, Macromolecules 41, 9335 (2008)ADSGoogle Scholar
- 147.C. Zhang, Y. Guo, K. Shepard, R.D. Priestley, J. Phys. Chem. Lett. 4, 431 (2013)Google Scholar
- 148.O. van den Berg, W.G.F. Sengers, W.F. Jager, S.J. Picken, M. Wübbenhorst, Macromolecules 37, 2460 (2004)ADSGoogle Scholar
- 149.R.D. Priestley, L.J. Broadbelt, J.M. Torkelson, K. Fukao, Phys. Rev. E 75, (2007)Google Scholar
- 150.W.G.F. Sengers, O. van den Berg, M. Wübbenhorst, A.D. Gotsis, Polymer 46, 6064 (2005)Google Scholar
- 151.K. Fukao, S. Uno, Y. Miyamoto, A. Hoshino, H. Miyaji, Phys. Rev. E 5, 6405 (2001)Google Scholar
- 152.K. Fukao, S. Uno, Y. Miyamoto, A. Hoshino, H. Miyaji, Phys. Rev. E 6405, (2001)Google Scholar
- 153.D. Labahn, R. Mix, A. Schonhals, Phys. Rev. E 79, 9 (2009)Google Scholar
- 154.K. Fukao, S. Uno, Y. Miyamoto, A. Hoshino, H. Miyaji, Phys. Rev. E 64, 11 (2001)Google Scholar
- 155.A. Serghei, M. Tress, F. Kremer, Macromolecules 39, 9385 (2006)ADSGoogle Scholar
- 156.A. Serghei, Y. Mikhailova, H. Huth, C. Schick, K.J. Eichhorn, B. Voit, F. Kremer, Eur. Phys. J. E 17, 199 (2005)Google Scholar
- 157.P.K. Brazhnik, K.F. Freed, H. Tang, J. Chem. Phys. 101, 9143 (1994)ADSGoogle Scholar
- 158.C. Bauer, R. Richert, R. Bohmer, T. Christensen, J. Non-Cryst. Solids 262, 276 (2000)ADSGoogle Scholar
- 159.C.L. Soles, J.F. Douglas, W.L. Wu, H.G. Peng, D.W. Gidley, Macromolecules 37, 2890 (2004)ADSGoogle Scholar
- 160.C.J. Ellison, M.K. Mundra, J.M. Torkelson, Macromolecules 38, 1767 (2005)ADSGoogle Scholar
- 161.C. Kim, A. Facchetti, T.J. Marks, Science 318, 76 (2007)ADSGoogle Scholar
- 162.N. Hao, M. Bohning, H. Goering, A. Schonhals, Macromolecules 40, 2955 (2007)ADSGoogle Scholar
- 163.C. Housmans, M. Sferrazza, S. Napolitano, in preparationGoogle Scholar
- 164.J.E. Pye, C.B. Roth, Phys. Rev. Lett. 23, 107 (2011) DOI:10.1103/PhysRevLett.107.235701 Google Scholar