Comparative study of non-invasive force and stress inference methods in tissue

  • S. IshiharaEmail author
  • K. Sugimura
  • S. J. Cox
  • I. Bonnet
  • Y. Bellaïche
  • F. Graner
Regular Article
Part of the following topical collections:
  1. Physical constraints of morphogenesis and evolution


In the course of animal development, the shape of tissue emerges in part from mechanical and biochemical interactions between cells. Measuring stress in tissue is essential for studying morphogenesis and its physical constraints. For that purpose, a possible new approach is force inference (up to a single prefactor) from cell shapes and connectivity. It is non-invasive and can provide space-time maps of stress in a whole tissue, unlike existing methods. To validate this approach, three force-inference methods, which differ in their approach of treating indefiniteness in an inverse problem between cell shapes and forces, were compared. Tests using two artificial and two experimental data sets consistently indicate that our Bayesian force inference, by which cell-junction tensions and cell pressures are simultaneously estimated, performs best in terms of accuracy and robustness. Moreover, by measuring the stress anisotropy and relaxation, we cross-validated the force inference and the global annular ablation of tissue, each of which relies on different prefactors. A practical choice of force-inference methods in different systems of interest is discussed.

Graphical abstract


Topical issue: Physical constraints of morphogenesis and evolution 


  1. 1.
    T. Lecuit, P.F. Lenne, Nat. Rev. Mol. Cell Biol. 8, 633 (2007).CrossRefGoogle Scholar
  2. 2.
    T. Lecuit, P.F. Lenne, E. Munro, Annu. Rev. Cell Dev. Biol. 27, 157 (2011).CrossRefGoogle Scholar
  3. 3.
    D. Bilder, S.L. Haigo, Dev. Cell 22, 12 (2012).CrossRefGoogle Scholar
  4. 4.
    S. Eaton, F. Jülicher, Curr. Opin. Genet. Dev. 21, 747 (2012).CrossRefGoogle Scholar
  5. 5.
    K.E. Kasza, J.A. Zallen, Curr. Opin. Cell Biol. 23, 30 (2011).CrossRefGoogle Scholar
  6. 6.
    M. Nahmad, A.D. Lander, Curr. Opin. Genet. Dev. 21, 726 (2011).CrossRefGoogle Scholar
  7. 7.
    O. Wartlick, M. Gonzalez-Gaitan, Curr. Opin. Genet. Dev. 21, 690 (2011).CrossRefGoogle Scholar
  8. 8.
    F. Graner, Y. Sawada, J. Theor. Biol. 164, 477 (1993).CrossRefGoogle Scholar
  9. 9.
    N.B. Ouchi, J.A. Glazier, J.P. Rieu, A. Upadhyaya, Y. Sawada, Physica A 329, 451 (2003).MathSciNetADSCrossRefzbMATHGoogle Scholar
  10. 10.
    J. Käfer, T. Hayashi, A.F.M. Marée, R. Carthew, F. Graner, Proc. Natl. Acad. Sci. U.S.A. 104, 18549 (2007).ADSCrossRefGoogle Scholar
  11. 11.
    R. Farhadifar, J.C. Roper, B. Aigouy, S. Eaton, F. Jülicher, Curr. Biol. 17, 2095 (2007).CrossRefGoogle Scholar
  12. 12.
    M. Krieg, Y. Arboleda-Estudillo, P.-H. Puech, J. Käfer, F. Graner, D.J. Müller, C.-P. Heisenberg, Nat. Cell. Biol. 10, 429 (2008).CrossRefGoogle Scholar
  13. 13.
    S. Hilgenfeldt, S. Erisken, R.W. Carthew, Proc. Natl. Acad. Sci. U.S.A. 105, 907 (2008).ADSCrossRefGoogle Scholar
  14. 14.
    H. Honda, N. Motosugi, T. Nagai, M. Tanemura, T. Hiiragi, Development 135, 1407 (2008).CrossRefGoogle Scholar
  15. 15.
    M. Rauzi, P. Verant, T. Lecuit, P.F. Lenne, Nat. Cell Biol. 10, 1401 (2008).CrossRefGoogle Scholar
  16. 16.
    B. Aigouy, R. Farhadifar, D.B. Staple, A. Sagner, J.C. Roper, F. Jülicher, S. Eaton, Cell 142, 773 (2010).CrossRefGoogle Scholar
  17. 17.
    D.B. Staple, R. Farhadifar, J.-C. Röper, B. Aigouy, S. Eaton, F. Jülicher, Eur. Phys. J. E 33, 117 (2010).CrossRefGoogle Scholar
  18. 18.
    Y. Mao, A.L. Tournier, P.A. Bates, J.E. Gale, N. Tapon, B.J. Thompson, Genes Dev. 25, 131 (2011).CrossRefGoogle Scholar
  19. 19.
    F. Bosveld, I. Bonnet, B. Guirao, S. Tlili, Z. Wang, A. Petitalot, R. Marchand, P.-L. Bardet, P. Marcq, F. Graner, Y. Bellaïche, Science 336, 724 (2012).ADSCrossRefGoogle Scholar
  20. 20.
    J. Ophir, I. Cespedes, B. Garra, H. Ponnekanti, Y. Huang, N. Maklad, Eur. J. Ultrasound 3, 49 (1996).CrossRefGoogle Scholar
  21. 21.
    U. Nienhaus, T. Aegerter-Wilmsen, C.M. Aegerter, Mech. Dev. 126, 942 (2009).CrossRefGoogle Scholar
  22. 22.
    N. Desprat, W. Supatto, P. Pouille, E. Beaurepaire, E. Farge, Dev. Cell 15, 470 (2008).CrossRefGoogle Scholar
  23. 23.
    V. Fleury, A. Al-Kilani, O.P. Boryskina, A.J.M. Cornelissen, T. Nguyen, M. Unbekandt, L. Leroy, G. Baffet, F.L. Noble, O. Sire, E. Lahaye, V. Burgaud, Phys. Rev. E 81, 021920 (2010).ADSCrossRefGoogle Scholar
  24. 24.
    A. Peaucelle, S. Braybrook, L.L. Guillou, E. Bron, C. Kuhlemeier, H. Höfte, Curr. Biol. 21, 1720 (2011).CrossRefGoogle Scholar
  25. 25.
    D.T. Tambe, C.C. Hardin, T.E. Angelini, K. Rajendran, C.Y. Park, X. Serra-Picamal, E.H. Zhou, M.H. Zaman, J.P. Butler, D.A. Weitz, J.J. Fredberg, X. Trepat, Nat. Mater. 10, 469 (2011).ADSCrossRefGoogle Scholar
  26. 26.
    A.R. Harris, L. Peter, J. Bellis, B. Baum, A.J. Kabla, G.T. Charras, Proc. Natl. Acad. Sci. U.S.A. 109, 16449 (2012).ADSCrossRefGoogle Scholar
  27. 27.
    M.S. Hutson, Y. Tokutake, M.S. Chang, J.W. Bloor, S. Venakides, D.P. Kiehart, G.S. Edwards, Science 300, 145 (2003).ADSCrossRefGoogle Scholar
  28. 28.
    M. Stein, R. Gordon, J. Theor. Biol. 97, 625 (1982).CrossRefGoogle Scholar
  29. 29.
    G.W. Brodland, V. Conte, P.G. Cranston, J. Veldhuis, S. Narasimhan, M.S. Hutson, A. Jacinto, F. Ulrich, B. Baum, M. Miodownik, Proc. Natl. Acad. Sci. U.S.A. 107, 22111 (2010).ADSCrossRefGoogle Scholar
  30. 30.
    K.K. Chiou, L. Hufnagel, B.I. Shraiman, PLoS Comput. Biol. 8, e1002512 (2012).CrossRefGoogle Scholar
  31. 31.
    S. Ishihara, K. Sugimura, J. Theor. Biol. 313, 201 (2012).CrossRefGoogle Scholar
  32. 32.
    I. Cantat, S. Cohen-Addad, F. Elias, F. Graner, R. Höhler, O. Pitois, F. Rouyer, A. Saint-Jalmes, Les Mousses---Structure et Dynamique (Belin, Paris, 2010).Google Scholar
  33. 33.
    I. Bonnet, P. Marcq, F. Bosveld, L. Fetler, Y. Bellaïche, F. Graner, J. R. Soc. Int. 9, 2614 (2012).CrossRefGoogle Scholar
  34. 34.
    K. Brakke, Exp. Math. 1, 141 (1992).MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    D. Weaire, S. Hutzler, The Physics of Foams (Clarendon, Oxford, 1999).Google Scholar
  36. 36.
    H. Honda, Int. Rev. Cytol. 81, 191 (1983).CrossRefGoogle Scholar
  37. 37.
    H. Akaike, in Bayesian Statistics, edited by J.M. Bernardo, M.H. DeGroot, D.V. Lindley, A.F.M. Smith (Valencia University Press, Valencia, 1980).Google Scholar
  38. 38.
    J. Kaipio, E. Somersalo, Statistical and Computational Inverse Problems (Springer, New York, 2004).Google Scholar
  39. 39.
    G.K. Batchelor, J. Fluid Mech. 41, 545 (1970).MathSciNetADSCrossRefzbMATHGoogle Scholar
  40. 40.
    D’A. Thompson, On Growth and Form (Cambridge University Press, Cambridge, 1917).Google Scholar
  41. 41.
    K. Sugimura, Y. Bellaiche, F. Graner, P. Marcq, S. Ishihara, Conf. Proc. IEEE Eng. Med. Biol. Soc., in press.Google Scholar
  42. 42.
    E. Janiaud, F. Graner, J. Fluid Mech. 532, 243 (2005).ADSCrossRefzbMATHGoogle Scholar
  43. 43.
    V. Kovalevsky, Int. J. Patt. Recognit. Artif. Intell. 15, 1183 (2001).CrossRefGoogle Scholar
  44. 44.
    D. Boal, Mechanics of the Cell (Cambridge University Press, Cambridge, 2002).Google Scholar
  45. 45.
    E. Bartnik, K. Weber, Eur. J. Cell Biol. 50, 17 (1989).Google Scholar
  46. 46.
    E. Goldstein, K. Gunawardena, J. Cell Biol. 150, F63 (2000).CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • S. Ishihara
    • 1
    Email author
  • K. Sugimura
    • 2
    • 3
  • S. J. Cox
    • 4
  • I. Bonnet
    • 5
    • 6
  • Y. Bellaïche
    • 5
  • F. Graner
    • 5
    • 7
  1. 1.Graduate School of Arts and SciencesThe University of TokyoMeguro-ku, TokyoJapan
  2. 2.Institute for Integrated Cell-Material Sciences (WPI-iCeMS)Kyoto UniversityKyotoJapan
  3. 3.RIKEN Brain Science InstituteWako, SaitamaJapan
  4. 4.Institute of Mathematics and PhysicsAberystwyth UniversityCeredigionUK
  5. 5.Genetics and Developmental Biology, Team “Polarity, division and morphogenesis”Institut Curie, UMR3215 CNRS, U934 InsermParisFrance
  6. 6.Physico-Chimie CurieInstitut Curie, UMR168 CNRS, UPMCParis Cedex 05France
  7. 7.Laboratoire Matière et Systèmes ComplexesUMR 7057 CNRS and Université Paris DiderotParis Cedex 13France

Personalised recommendations