Theoretical model for cell migration with gradient sensing and shape deformation

  • Tetsuya Hiraiwa
  • Akinori Baba
  • Tatsuo Shibata
Open Access
Regular Article


Amoeboid cells take various shapes during migration, depending on the cell type and its environment. Deformability of the cell shape can then affect the migrating behavior. In this article, we introduce a theoretical model of chemotactic cell migration with elliptical shape deformation. Based on the model, we calculate the stationary distributions of the migration directions analytically. As a result, we find that the distributions show different characteristics depending on the difference in the interdependence of the internal polarity, cell morphology and gradient sensing.

Graphical abstract


Living systems: Cellular Processes 


  1. 1.
    Y.T. Maeda, J. Inoue, M.Y. Matsuo, S. Iwaya, M. Sano, PLoS ONE 3, e3734 (2008)ADSCrossRefGoogle Scholar
  2. 2.
    A. Mogilner, K. Keren, Curr. Biol. 19, R762 (2009)CrossRefGoogle Scholar
  3. 3.
    B. Hu, D. Fuller, W.F. Loomis, H. Levine, W. Rappel, Phys. Rev. E 81, 031906 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    H. Takagi, M. Sato, T. Yanagida, M. Ueda, PLoS ONE 3, e2648 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    L. Li, E.C. Cox, H. Flyvbjerg, Phys. Biol. 8, 046006 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    P.R. Fisher, R. Merkl, G. Gerish, J. Cell. Biol. 108, 973 (1989)CrossRefGoogle Scholar
  7. 7.
    S.M. Nadkarni, H.U. Bödeker, C. Beta, A. Bae, C. Eranck, W.-J. Rappel, W.F. Loomis, E. Bodenschatz, Euro. J. Cell Biol. 85, 981 (2006)CrossRefGoogle Scholar
  8. 8.
    L. Li, S.F. Norrelykke, E.C. Cox, PLoS ONE 3, e2093 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    W. Chen, M. Adler, A. Groisman, H. Levine, W. Rappel, W.F. Loomis, Proc. Natl. Acad. Sci. U.S.A. 107, 9656 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    P.J.M. Haastert, M. Postma, Biophys. J. 93, 1787 (2007)CrossRefGoogle Scholar
  11. 11.
    M. Postma, J. Roelofs, J. Goedhart, H.M. Loovers, A.J.W.G. Visser, P.J.M. Haastert, J. Cell Sci. 117, 2925 (2004)CrossRefGoogle Scholar
  12. 12.
    Y. Arai, T. Shibata, S. Matsuoka, M.J. Sato, T. Yanagida, M. Ueda, Proc. Natl. Acad. Sci. U.S.A. 107, 12399 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    T. Shibata, M. Nishikawa, S. Matsuoka, M. Ueda, J. Cell Sci. 125, 5138 (2012)CrossRefGoogle Scholar
  14. 14.
    B. Hu, W. Chen, W. Rappel, H. Levine, Phys. Rev. E 83, 021917 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    A. Baba, T. Hiraiwa, T. Shibata, Phys. Rev. E 86, 060901(R) (2012)ADSCrossRefGoogle Scholar
  16. 16.
    M. Ueda, Y. Sako, T. Tanaka, P. Devreotes, T. Yanagida, Science 294, 864 (2001)ADSCrossRefGoogle Scholar
  17. 17.
    M. Ueda, T. Shibata, Biophys. J. 93, 11 (2007)ADSCrossRefGoogle Scholar
  18. 18.
    M. Schienbein, H. Gruler, Bull. Math. Biol. 55, 585 (1993)zbMATHGoogle Scholar
  19. 19.
    T. Ohta, T. Ohkuma, Phys. Rev. Lett. 102, 154101 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    T. Hiraiwa, M.Y. Matsuo, T. Ohkuma, T. Ohta, M. Sano, EPL 91, 20001 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    B. Hu, W. Chen, W. Rappel, H. Levine, Phys. Rev. Lett. 105, 048104 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    P.-G. de Gennes, J. Prost, The Physics of Liquid Crystals (Oxford University Press, Oxford, 1993)Google Scholar
  23. 23.
    M. Tarama, T. Ohta, Eur. Phys. J. B 83, 391 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    B. Meier, A. Zielinski, C. Weber, D. Arcizet, S. Youssef, T. Franosch, J.O. Rädler, D. Heinrich, Proc. Natl. Acad. Sci. U.S.A. 108, 11417 (2011)ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2013

Authors and Affiliations

  • Tetsuya Hiraiwa
    • 1
    • 2
  • Akinori Baba
    • 1
    • 2
  • Tatsuo Shibata
    • 1
    • 2
  1. 1.Center for Developmental BiologyRIKENHyogoJapan
  2. 2.Japan Science and Technology AgencyCRESTOsakaJapan

Personalised recommendations