Relaxation of non-equilibrium entanglement networks in thin polymer films

  • Joshua D. McGraw
  • Paul D. Fowler
  • Melissa L. Ferrari
  • Kari Dalnoki-Veress
Regular Article

Abstract

It is known that polymer films, prepared by spin coating, inherit non-equilibrium configurations which can affect macroscopic film properties. Here we present the results of crazing experiments that support this claim; our measurements indicate that the as-cast chain configurations are strongly stretched as compared to equilibrium Gaussian configurations. The results of our experiments also demonstrate that the entanglement network equilibrates on a time scale comparable to one reptation time. Having established that films can be prepared with an equilibrium entanglement network, we proceed by confining polymers to films in which the thickness is comparable to the molecular size. By stacking two such films, a bilayer is created with a buried entropic interface. Such an interface has no enthalpic cost, only an entropic penalty associated with the restricted configurations of molecules that cannot cross the mid-plane of the bilayer. In the melt, the entropic interface heals as chains from the two layers mix and entangle with one another; crazing measurements allow us to probe the dynamics of two films becoming one. Healing of the entropic interface is found to take less than one bulk reptation time.

Graphical abstract

Keywords

Soft Matter: Polymers and Polyelectrolytes 

References

  1. 1.
    P.G. de Gennes, Scaling Concepts in Polymer Physics (Cornell University Press, 1979)Google Scholar
  2. 2.
    M. Rubinstein, R.H. Colby, Polymer Physics (Oxford University Press, 2003)Google Scholar
  3. 3.
    G.C. Berry, T.G. Fox, Adv. Polym. Sci. 5, 261 (1968)CrossRefGoogle Scholar
  4. 4.
    J.D. Ferry, Viscoelastic Properties of Polymers, 3rd edition (John Wiley & Sons, Inc., 1980)Google Scholar
  5. 5.
    T.C.B. McLeish, Adv. Phys. 51, 1379 (2002)ADSCrossRefGoogle Scholar
  6. 6.
    A.E. Likhtman, T.C.B. McLeish, Macromolecules 35, 6332 (2002)ADSCrossRefGoogle Scholar
  7. 7.
    H.H. Kausch, M. Tirrell, Annu. Rev. Mater. Sci. 19, 341 (1989)ADSCrossRefGoogle Scholar
  8. 8.
    C. Creton, E.J. Kramer, H.R. Brown, C.-Y. Hui, Adv. Polym. Sci. 156, 53 (2001)CrossRefGoogle Scholar
  9. 9.
    E.J. Kramer, Adv. Polym. Sci. 52/53, 1 (1983)Google Scholar
  10. 10.
    E.J. Kramer, L.L. Berger, Adv. Polym. Sci. 91/92, 1 (1990)Google Scholar
  11. 11.
    H.R. Brown, Macromolecules 24, 2752 (1991)ADSCrossRefGoogle Scholar
  12. 12.
    H.R. Brown, T.P. Russell, Macromolecules 29, 798 (1996)ADSCrossRefGoogle Scholar
  13. 13.
    L. Si, M.V. Massa, K. Dalnoki-Veress, H.R. Brown, R.A.L. Jones, Phys. Rev. Lett. 94, 127801 (2005)ADSCrossRefGoogle Scholar
  14. 14.
    F. Brochard-Wyart, P.G. de Gennes, H. Hervet, C. Redon, Langmuir 10, 1566 (1994)CrossRefGoogle Scholar
  15. 15.
    O. Bäumchen, R. Fetzer, K. Jacobs, Phys. Rev. Lett. 103, 247801 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    D.R. Barbero, U. Steiner, Phys. Rev. Lett. 102, 248303, (2009)ADSCrossRefGoogle Scholar
  17. 17.
    K.R. Thomas, A. Chenneviere, G. Reiter, U. Steiner, Phys. Rev. E 83, 021804 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    R.N. Li, A. Clough, Z. Yang, O.K.C. Tsui, Macromolecules 45, 1085 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    A. Clough, M. Chowdhury, K. Jahanshahi, G. Reiter, O.K.C. Tsui, Macromolecules 45, 6196 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    S.G. Croll, J. Appl. Polym. Sci. 23, 847 (1979)CrossRefGoogle Scholar
  21. 21.
    G. Reiter, M. Hamieh, P. Damman, S. Sclavons, S. Gabriele, T. Vilmin, E. Raphaël, Nat. Mater. 4, 754 (2005)ADSCrossRefGoogle Scholar
  22. 22.
    P. Damman, S. Gabriele, S. Coppée, S. Desprez, D. Villers, T. Vilmin, E. Raphaël, M. Hamieh, S. Al Akhrass, G. Reiter, Phys. Rev. Lett. 99, 036101 (2007)ADSCrossRefGoogle Scholar
  23. 23.
    A. Raegen, M. Chowdhury, C. Calers, A. Schmatulla, U. Steiner, G. Reiter, Phys. Rev. Lett. 105, 227801 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    K.R. Thomas, U. Steiner, Soft Matter 15, 7839 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    F. Closa, F. Zeibert, E. Raphaël, Phys. Rev. E 83, 051603 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    M. Chowdhury, P. Freyberg, F. Zeibert, A.C.-M. Yang, U. Steiner, G. Reiter, Phys. Rev. Lett. 109, 136102 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    A. Silberberg, J. Colloid Interface Sci. 90, 86 (1982)CrossRefGoogle Scholar
  28. 28.
    H. Bodiguel, C. Fretigny, Phys. Rev. Lett. 97, 266105 (2006)ADSCrossRefGoogle Scholar
  29. 29.
    L.J. Fetters, D.J. Lohse, D. Richter, T.A. Witten, A. Zirkel, Macromolecules 27, 4639 (1994)ADSCrossRefGoogle Scholar
  30. 30.
    L.J. Fetters, D.J. Lohse, W.W. Graessley, J. Polym. Sci. Polym. Phys. 37, 1023 (1999)ADSCrossRefGoogle Scholar
  31. 31.
    J. Klein, Nature 12, 144 (1978)Google Scholar
  32. 32.
    P.F. Green, E.J. Kramer, Macromolecules 19, 1108 (1986)ADSCrossRefGoogle Scholar
  33. 33.
    Y. Liu, G. Reiter, K. Kunz, M. Stamm, Macromolecules 26, 2134 (1993)ADSCrossRefGoogle Scholar
  34. 34.
    A. Karim, G.P. Felcher, T.P. Russell, Macromolecules 27, 6973 (1994)ADSCrossRefGoogle Scholar
  35. 35.
    P.G. de Gennes, J. Chem. Phys. 35, 572 (1971)ADSCrossRefGoogle Scholar
  36. 36.
    K. Jud, H.H. Kausch, J.G. Williams, J. Mater. Sci. 16, 204 (1981)ADSCrossRefGoogle Scholar
  37. 37.
    S. Prager, M. Tirrell, J. Chem. Phys. 75, 5194 (1981)ADSCrossRefGoogle Scholar
  38. 38.
    F. Brochard-Wyart. Fundamentals of Adhesion, Chapter 6 (Plenum Press, New York, 1991)Google Scholar
  39. 39.
    F. Pierce, D. Perahia, G.S. Grest, EPL 95, 46001 (2011)ADSCrossRefGoogle Scholar
  40. 40.
    J. Rottler, M.O. Robbins, Phys. Rev. E. 68, 011801 (2003)ADSCrossRefGoogle Scholar
  41. 41.
    J. Rottler, J. Phys.: Condens. Matter 21, 463101 (2009)ADSCrossRefGoogle Scholar
  42. 42.
    H.R. Brown, J. Mater. Sci. 14, 237 (1979)ADSCrossRefGoogle Scholar
  43. 43.
    B.D. Lauterwasser, E.J. Kramer, Philos. Mag. A 39, 469 (1979)ADSCrossRefGoogle Scholar
  44. 44.
    J.D. McGraw, K. Dalnoki-Veress, Phys. Rev. E 82, 021802 (2010)ADSCrossRefGoogle Scholar
  45. 45.
    A.M. Donald, E.J. Kramer, J. Polym. Sci. Part B: Polym. Phys. 20, 899 (1982)ADSCrossRefGoogle Scholar
  46. 46.
    A.M. Donald, E.J. Kramer, Polymer 23, 461 (1982)CrossRefGoogle Scholar
  47. 47.
    A.C.-M. Yang, E.J. Kramer, C.C. Kuo, S.L. Phoenix, Macromolecules 19, 2020 (1986)ADSCrossRefGoogle Scholar
  48. 48.
    A.G. Emslie, F.T. Bonner, L.G. Peck, J. Appl. Phys. 20, 858 (1958)MathSciNetADSCrossRefGoogle Scholar
  49. 49.
    A. Bach, K. Almdal, H.K. Rasmussen, O. Hassager, Macromolecules 36, 5174 (2003)ADSCrossRefGoogle Scholar
  50. 50.
    S. Napolitano, M. Wübbenhorst, Nat. Commun. 2, 260 (2011)ADSCrossRefGoogle Scholar
  51. 51.
    J.P. Cotton, D. Decker, H. Benoit, B. Farnoux, J. Higgins, G. Jannink, R. Ober, C. Picot, J. des Cloizeaux, Macromolecules 7, 863 (1974)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Joshua D. McGraw
    • 1
  • Paul D. Fowler
    • 1
  • Melissa L. Ferrari
    • 1
  • Kari Dalnoki-Veress
    • 1
  1. 1.Department of Physics & Astronomy and the Brockhouse Institute for Materials ResearchMcMaster UniversityHamiltonCanada

Personalised recommendations