Advertisement

Comment on the diffusion properties presented in “Temporal and structural characteristics of a two-dimensional gas of hard needles”

  • Agnieszka ChrzanowskaEmail author
Comment
  • 80 Downloads

Abstract

The intensive properties of two-dimensional anisotropic systems like the average number of collisions, pressure or diffusivities, are, despite the fact that the thermodynamical types of phase transitions are attributed to the Kosterlitz-Thouless mechanism, determined by local properties. In the case of hard needles they are influenced by the local orientational transition governed by the steric excluded-volume interactions which, according to the Onsager theory, takes place at the reduced density ρ * = 4.7 . The density dependence of the diffusion coefficients from the affine transformation model and the Enskog theory with the help of the Onsager distribution function are compared to the outcome of the data presented by M.E. Foulaadvand and M. Yarifard in Eur. Phys. J. E 34, 41 (2011). The similarities and discrepancies are discussed.

Keywords

Soft Matter: Liquid crystals 

References

  1. 1.
    M.E. Foulaadvand, M. Yarifard, Eur. Phys. J. E 34, 41 (2011).CrossRefGoogle Scholar
  2. 2.
    A. Chrzanowska, J. Chem. Phys. 120, 2857 (2004).CrossRefADSGoogle Scholar
  3. 3.
    A. Chrzanowska, Mol. Cryst. Liq. Cryst. 495, 169 (2008).CrossRefGoogle Scholar
  4. 4.
    S. Tang, G. Evans, J. Chem. Phys. 98, 7281 (1993).CrossRefADSGoogle Scholar
  5. 5.
    S.V. Dvinskikh, I. Furo, H. Zimmermann, A. Maliniak, Phys. Rev. E 65, 061701-1 (2002).ADSGoogle Scholar
  6. 6.
    M.P.B. van Bruggen, H.N.V. Lekkerkerker, G. Maret, J.K.G. Dhont, Phys. Rev. E 58, 7668 (1998).CrossRefADSGoogle Scholar
  7. 7.
    J. Szymański, A. Wilk, R. Holyst, G. Roberts, K. Sinclair, A. Kowalski, J. Non-Newtonian Fluid Mech. 148, 134 (2008).CrossRefGoogle Scholar
  8. 8.
    A. Chrzanowska, Elastic and granular properties of two-dimensional hard needles, Wydawnictwo Politechniki Krakowskiej, ISSN 0860-097X, (2006).Google Scholar
  9. 9.
    S. Hess, D. Frenkel, M.P. Allen, Mol. Phys. 74, 765 (1991).CrossRefADSGoogle Scholar
  10. 10.
    D. Frenkel, J.F. Maguire, Mol. Phys. 49, 503 (1983).CrossRefADSGoogle Scholar
  11. 11.
    A. Chrzanowska, Acta Phys. Pol. B 36, 3164 (2005).ADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Institute of PhysicsKraków University of TechnologyKrakówPoland

Personalised recommendations