Colloidal aggregates tested via nanoindentation and quasi-simultaneous 3D imaging

  • Marcel Roth
  • Carsten Schilde
  • Philipp Lellig
  • Arno Kwade
  • Günter K. Auernhammer
Regular Article

Abstract

The mechanical properties of aggregated colloids depend on the mutual interplay of inter-particle potentials, contact forces, aggregate structure and material properties of the bare particles. Owing to this variety of influences, experimental results from macroscopic mechanical testings were mostly compared to time-consuming, microscopic simulations rather than to analytical theories. The aim of the present paper was to relate both macroscopic and microscopic mechanical data with each other and simple analytical models. We investigated dense amorphous aggregates made from monodisperse poly-methyl methacrylate (PMMA) particles (diameter: 1.6 \(\mu\)m via nanoindentation in combination with confocal microscopy. The resulting macroscopic information was complemented by the three-dimensional aggregate structure as well as the microscopic strain field and strain tensor. The measured strain field and tensor were in reasonable agreement with the predictions from analytical continuum theories. Consequently, the measured force-depth curves could be analyzed within a theoretical framework that had been frequently used for nanoindentation of atomic matter such as metals, ceramics and polymers. The extracted values for hardness and effective Young’s modulus represented average values characteristic of the aggregate. On the basis of of these parameters we discuss the influence of the strength of particle bonds by introducing polystyrene (PS) between the particles.

Graphical abstract

Keywords

Soft Matter: Colloids and Nanoparticles 

References

  1. 1.
    Alfons van Blaaderen, Science 301, 470 (2003)CrossRefGoogle Scholar
  2. 2.
    Daan Frenkel, Science 296, 65 (2002)CrossRefGoogle Scholar
  3. 3.
    P. Schall, I. Cohen, D.A. Weitz, F. Spaepen, Nature 440, 319 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    Dirk G.A.L. Aarts, Matthias Schmidt, Henk N.W. Lekkerkerker, Science 304, 847 (2004)ADSCrossRefGoogle Scholar
  5. 5.
    R. Besseling, Eric R. Weeks, A.B. Schofield, W.C.K. Poon, Phys. Rev. Lett. 99, 028301 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    Eric R. Weeks, J.C. Crocker, Andrew C. Levitt, Andrew Schofield, D.A. Weitz, Science 287, 627 (2000)ADSCrossRefGoogle Scholar
  7. 7.
    K.A. Dawson, G. Foffi, F. Sciortino, P. Tartaglia, E. Zaccarelli, J. Phys.: Condens. Matter 13, 9113 (2001)ADSCrossRefGoogle Scholar
  8. 8.
    M. Siebenbrger, M. Ballauff, J. Rheol. 53, 707 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    Alessio Zaccone, Miroslav Soos, Marco Lattuada, Hua Wu, Matthäus U. Bäbler, Massimo Morbidelli, Phys. Rev. E 79, 061401 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    C. Schilde, S. Breitung-Faes, A. Kwade, Ceramic Forum Internat. 84, 12 (2007)Google Scholar
  11. 11.
    C. Schilde, I. Kampen, A. Kwade, Chem. Eng. Sci. 65, 3518 (2010)CrossRefGoogle Scholar
  12. 12.
    C. Schilde, T. Gothsch, K. Quarch, M. Kind, A. Kwade, Chem. Eng. Tech. 32, 1078 (2009)CrossRefGoogle Scholar
  13. 13.
    C. Schilde, A. Kwade, Chem. Ing. Tech. 81, 1155 (2009)CrossRefGoogle Scholar
  14. 14.
    S. Zumer, M. Ravnik, T. Porenta, G.P. Alexander, J.M. Yeomans, Proc. SPIE 7775, 77750H (2010) DOI:10.1117/2.1201009.003168 ADSCrossRefGoogle Scholar
  15. 15.
    Y.A. Vlasov, X.-Z. Bo, J.C. Sturm, D.J. Norris, Nature 414, 289 (2001)ADSCrossRefGoogle Scholar
  16. 16.
    M. D’Acunzi, M. Mammen, L. Singh, X. Deng, M. Roth, G.K. Auernhammer, H.-J. Butt, D. Vollmer, Faraday Discuss. 146, 35 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    J. Boussinesq, Applications des Potentiels a l’étude de équilibre et du mouvement des solides élastiques (Gauthier-Villars, Paris, 1885)Google Scholar
  18. 18.
    H. Hertz, J. Reine Angew. Math. 1882, 156 (1882)Google Scholar
  19. 19.
    J. Hay, Exp. Tech. 33, 66 (2009)CrossRefGoogle Scholar
  20. 20.
    M.F. Doernera, W.D. Nixa, J. Mater. Res. 1, 601 (1986)ADSCrossRefGoogle Scholar
  21. 21.
    Krystyn J. Van Vliet, Catherine A. Tweedie, J. Mater. Res. 21, 3029 (2006)ADSCrossRefGoogle Scholar
  22. 22.
    A. Gouldstone, K.J. Van Vliet, S. Suresh, Nature 411, 656 (2001)ADSCrossRefGoogle Scholar
  23. 23.
    D. Filip, V.I. Uricanu, M.H.G. Duits, D. van den Ende, J. Mellema, W.G.M. Agterof, F. Mugele, Langmuir 22, 560 (2006)CrossRefGoogle Scholar
  24. 24.
    X. Ling, H.-J. Butt, M. Kappl, Langmuir 23, 8392 (2007)CrossRefGoogle Scholar
  25. 25.
    Lars-Oliver Heim, Jürgen Blum, Markus Preuss, Hans-Jürgen Butt, Phys. Rev. Lett. 83, 3328 (1999)ADSCrossRefGoogle Scholar
  26. 26.
    S. Ecke, R. Raiteri, E. Bonaccurso, C. Reiner, H.-J. Deiseroth, H.J. Butt, Rev. Sci. Instrum. 72, 4164 (2001)ADSCrossRefGoogle Scholar
  27. 27.
    R.R. Agayan, R.G. Smith, R. Kopelman, J. Appl. Phys. 104, 1 (2008)CrossRefGoogle Scholar
  28. 28.
    John C. Crocker, David G. Grier, J. Colloid Interface Sci. 179, 298 (1996)CrossRefGoogle Scholar
  29. 29.
    E. Weeks, Particle tracking using idl, http://www.physics.emory.edu/~weeks/idl, September 2008
  30. 30.
    Peter Schall, David A. Weitz, Frans Spaepen, Science 318, 1895 (2007)ADSCrossRefGoogle Scholar
  31. 31.
    D. Chen, D. Semwogerere, J. Sato, V. Breedveld, Eric R. Weeks, Phys. Rev. E 81, 011403 (2010)ADSCrossRefGoogle Scholar
  32. 32.
    Subra Suresh, Nat. Mater. 5, 253 (2006)ADSCrossRefGoogle Scholar
  33. 33.
    R.L. Smith, G.E. Sandland, Proc. Inst. Mech. Eng. 102, 623 (1922)CrossRefGoogle Scholar
  34. 34.
    J.A. Brinell, Congr. Int. Meth. Essai Matér. Construct. 2, 83 (1901)Google Scholar
  35. 35.
    S.I. Bulychev, V.P. Alekhin, M.Kh. Shorshorov, A.P. Ternovskii, G.D. Shnyrev, Zavod. Lab. 41, 1137 (1975)Google Scholar
  36. 36.
    S.I. Bulychev, V.P. Alekhin, Zavod. Lab. 53, 76 (1987)Google Scholar
  37. 37.
    M.F. Doerner, W.D. Nix, J. Mater. Res. 1, 601 (1986)ADSCrossRefGoogle Scholar
  38. 38.
    N.H. Oliver, G.M. Pharr, J. Mater. Res. 7, 1564 (1992)ADSCrossRefGoogle Scholar
  39. 39.
    R. Bartali, V. Michelia, G. Gottardia, A. Vaccaria, N. Laidania, Surf. Coat. Tech. 204, 2073 (2010)CrossRefGoogle Scholar
  40. 40.
    J. Malzbender, G. de With, J. Mater. Res. 17, 502 (2002)ADSCrossRefGoogle Scholar
  41. 41.
    W.C. Oliver, G.M. Pharr, J. Mater. Res. 19, 3 (2004)ADSCrossRefGoogle Scholar
  42. 42.
    C. Pathmamanoharan, K. Groot, J.K.G. Dhont, Colloids Polym. Sci. 275, 897 (1997)CrossRefGoogle Scholar
  43. 43.
    L. Antl, J.W. Goodwin, R.D. Hill, R.H. Ottewill, S.M. Owens, S. Papworth, J.A. Waters, Coll. Surf. 17, 67 (1986)CrossRefGoogle Scholar
  44. 44.
    Remco Tuinier, Gerrit A. Vliegenthart, Henk N.W. Lekkerkerker, J. Chem. Phys. 113, 10768 (2000)CrossRefGoogle Scholar
  45. 45.
    P.J. Lu, J.C. Conrad, H.M. Wyss, A.B. Schofield, D.A. Weitz, Phys. Rev. Lett. 96, 028306 (2006)ADSCrossRefGoogle Scholar
  46. 46.
    C.P. Ohtsuka, T. Royall, H. Tanaka, EPL 84, 46002 (2008)ADSCrossRefGoogle Scholar
  47. 47.
    Rei Kurita, Eric R. Weeks, Phys. Rev. E 82, 011403 (2010)ADSCrossRefGoogle Scholar
  48. 48.
    M. Roth, M. Franzmann, M. d’Acunzi, M. Kreiter, G.K. Auernhammer, Arxiv. cond-mat. soft. 1106, 3623v1 (2011)Google Scholar
  49. 49.
    James B. Pawley, Handbook of biological confocal microscopy (Springer Science + Buisness Media, LLC, 2006)Google Scholar
  50. 50.
    Marvin Minski, Scanning 10, 128 (1988)CrossRefGoogle Scholar
  51. 51.
    A.D. Dinsmore, Eric R. Weeks, Vikram Prasad, Andrew C. Levitt, D.A. Weitz, Appl. Opt. 40, 4152 (2001)ADSCrossRefGoogle Scholar
  52. 52.
    T. Kawasaki, A. Onuki, cond-mat.soft 1103, 1051 (2011)Google Scholar
  53. 53.
    K.L. Johnson, Contact mechanics, chapter 4, Normal contact of elastic solids: Hertz theory (Cambridge University Press, 2004) pp. 84--106Google Scholar
  54. 54.
    M.T. Huber, Ann. Phys. (Leipzig) 316, 153 (2006)Google Scholar
  55. 55.
    R.M. Davies, Proc. R. Soc. London, Ser. A 197, 416 (1949)ADSCrossRefGoogle Scholar
  56. 56.
    K.L. Johnson, Contact mechanics, chapter 6, Normal contact of inelastic solids (Cambridge University Press, 2004) pp. 153--201Google Scholar
  57. 57.
    I.S. Choi, M. Dao, S. Suresh, J. Mech. Phys. Solids 56, 157 (2008)CrossRefADSMATHGoogle Scholar
  58. 58.
    K.-P. Lu, S. Lee, C.P. Cheng, J. Appl. Phys. 90, 1745 (2001)ADSCrossRefGoogle Scholar
  59. 59.
    Y.-T. Cheng, C.-M. Cheng, Appl. Phys. Lett. 73, 614 (1998)ADSCrossRefGoogle Scholar
  60. 60.
    J. Malzbender, G. de With, Surf. Coat. Tech. 135, 60 (2000)CrossRefGoogle Scholar
  61. 61.
    Marcel Roth, Carsten Schilde, Philipp Lellig, Arno Kwade, Günter K. Auernhammer, Chem. Lett. 41, 1110 (2012)CrossRefGoogle Scholar
  62. 62.
    L. Zhang, M. D’Acunzi, M. Kappl, G.K. Auernhammer, D. Vollmer, Langmuir 25, 2711 (2009)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Marcel Roth
    • 1
    • 3
  • Carsten Schilde
    • 2
  • Philipp Lellig
    • 1
  • Arno Kwade
    • 2
  • Günter K. Auernhammer
    • 1
  1. 1.Experimental Physics of InterfacesMax Planck Institute for Polymer ResearchMainzGermany
  2. 2.Institute for Particle TechnologyBraunschweigGermany
  3. 3.Graduate School Materials Science in MainzMainzGermany

Personalised recommendations