A model for the onset of oscillations near the stopping angle in an inclined granular flow

Regular Article

Abstract.

We propose an explanation for the onset of oscillations seen in numerical simulations of dense, inclined flows of inelastic, frictional spheres. It is based on a phase transition between disordered and ordered collisional states that may be interrupted by the formation of force chains. Low-frequency oscillations between ordered and disordered states take place over weakly bumpy bases; higher-frequency oscillations over strongly bumpy bases involve the formation of particle chains that extend to the base and interrupt the phase change. The predicted frequency and amplitude of the oscillations induced by the unstable part of the equation of state are similar to those seen in the simulations and they depend upon the contact stiffness in the same way. Such oscillations could be the source of sound produced by flowing sand.

Graphical abstract

Keywords

Flowing Matter: Granular Matter 

Supplementary material

10189_2012_9800_MOESM1_ESM.zip (1.7 mb)
Supplementary material, approximately 139 KB.

References

  1. 1.
    L.E. Silbert, Phys. Rev. Lett. 94, 098002 (2005)ADSCrossRefGoogle Scholar
  2. 2.
    L.E. Silbert, G.S. Grest, S.J. Plimpton, Phys. Fluids 14, 2637 (2002)MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    P. Mills, F. Chevoir, Rheology of granular materials and sound emission near the jamming transition, in Powders and Grains 2009, edited by M. Nakagawa, S. Luding (Golden, Colorado, 2009), AIP Conf. Proc. 1145, pp. 511-514Google Scholar
  4. 4.
    B.J. Alder, T.E. Wainwright, J. Chem. Phys. 33, 1439 (1960)MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    M.D. Rintoul, S. Torquato, J. Chem. Phys. 105, 9258 (1996)ADSCrossRefGoogle Scholar
  6. 6.
    P. Richard, S. McNamara, M. Tankeo, Phys. Rev. E 85, 010301 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    J.T. Jenkins, D. Berzi, Granular Matter 12, 151 (2010)CrossRefMATHGoogle Scholar
  8. 8.
    G.D.R. MiDi, Eur. Phys. J. E 14, 341 (2004)CrossRefGoogle Scholar
  9. 9.
    A.E.H. Love, A Treatise on the Mathematical Theory of Elasticity (Cambridge University Press, 1927.)Google Scholar
  10. 10.
    J.T. Jenkins, O.D.L. Strack, Mech. Matls. 16, 25 (1993)CrossRefGoogle Scholar
  11. 11.
    N.M. Vriend, M.L. Hunt, R.W. Clayton, C.E. Brennen, K.S. Brantley, A. Ruiz-Angulo, Geophys. Res. Lett. 34, L16306 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    B. Andreotti, Phys. Rev. Lett. 93, 238001 (2004)ADSCrossRefGoogle Scholar
  13. 13.
    F. Nori, P. Sholtz, M. Bretz, Sci. Am. 277, 64 (1997)CrossRefGoogle Scholar
  14. 14.
    D.T. Trexler, W.N. Melhorn, California Geol. 39, 147 (1986)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Field of Theoretical and Applied MechanicsCornell UniversityIthaca, New YorkUSA
  2. 2.Institut de Physique de Rennes, UMR CNRS 6251University of Rennes 1RennesFrance

Personalised recommendations