Twisting and buckling: A new undulation mechanism for artificial swimmers

  • Ghani Oukhaled
  • Andrejs Cebers
  • Jean-Claude Bacri
  • Jean-Marc Di Meglio
  • Charlotte Py
Regular Article
Part of the following topical collections:
  1. Active Matter


Among the various locomotion strategies of the animal kingdom, the undulation locomotion is of particular interest for biomimetic applications. In this paper, we present an artificial swimmer set into motion by a new and non-trivial undulation mechanism, based on the twisting and buckling of its body. The swimmer consists of a long cylinder of ferrogel which is polarized transversely and in opposite directions at each extremity. When it is placed on a water film and submitted to a transverse oscillating magnetic field, the worm-like swimmer undulates and swims. Whereas symmetry breaking is due to the field gradient, the undulations of the worm result from a torsional buckling instability as the polarized ends tend to align with the applied magnetic field. The critical magnetic field above which buckling and subsequent swimming is observed may be predicted using elasticity equations including the effect of the magnetic torque. As the length of the worm is varied, several undulation modes are observed which are in good agreement with the bending modes of an elastic rod with free ends.

Graphical abstract


Regular Article - Topical issue: Active Matter 

Supplementary material (156 kb)
Supplementary material (41 kb)
Supplementary material (110 kb)
Supplementary material

Supplementary material


  1. 1.
    S. Guo, Q. Pan, M.B. Khamesee, Microsyst. Technol. 14, 307 (2008)CrossRefGoogle Scholar
  2. 2.
    J.J. Abbott, K.E. Peyer, M.C. Lagomarsino et al., Int. J. Robotic Res. 28, 1434 (2009)CrossRefGoogle Scholar
  3. 3.
    D.L. Hu, J. Nirodya, T. Scotta et al., Proc. Natl. Acad. Sci. U.S.A. 106, 10081 (2009)ADSCrossRefGoogle Scholar
  4. 4.
    G.B. Gillis, J. Exp. Biol. 201, 3245 (1998)Google Scholar
  5. 5.
    R.M. Alexander, in The Biology of Nematodes, Chapt. 13, edited by D.L. Lee (Taylor and Francis Inc., 2002)Google Scholar
  6. 6.
    J. Korta, D.A. Clark, C.V. Gabel, L. Mahadevan, A.D.T. Samuel, J. Exp. Biol. 210, 2383 (2007)CrossRefGoogle Scholar
  7. 7.
    A. Crespi, A. Badertscher, A. Guignard et al., Rob. Autom. Syst. 50, 163 (2005)CrossRefGoogle Scholar
  8. 8.
    R. Dreyfus, J. Baudry, M.L. Roper, M. Fermigier, H.A. Stone, J. Bibette, Nature (London) 437, 862 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    A. Snezhko, M. Belkin, I.S. Aranson, W.K. Kwok, Phys. Rev. Lett. 102, 118103 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    E.M. Purcell, Am. J. Phys. 45, 3 (1977)ADSCrossRefGoogle Scholar
  11. 11.
    C.H. Wiggins, R.E. Goldstein, Phys. Rev. Lett 80, 3879 (1998)ADSCrossRefGoogle Scholar
  12. 12.
    L.E. Becker, S.A. Koehler, H.A. Stone, J. Fluid Mech. 490, 15 (2003)MathSciNetADSCrossRefMATHGoogle Scholar
  13. 13.
    J.E. Avron, O. Gat, O. Kenneth, Phys. Rev. Lett. 93, 186001 (2004)ADSCrossRefGoogle Scholar
  14. 14.
    D. Tam, A.E. Hosoi, Phys. Rev. Lett. 98, 068105 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    N. Coq, O. du Roure, J. Marthelot, D. Bartolo, M. Fermigier, Phys. Fluids. 20, 051703 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    E. Lauga, T.R. Powers, Rep. Prog. Phys. 72, 096601 (2009)MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    S. Sudo, S. Segawa, T. Honda, J. Intell. Mater. Syst. Struct. 17, 729 (2006)CrossRefGoogle Scholar
  18. 18.
    S. Foner, E.J. McNiff, Rev. Sci. Instrum. 39, 171 (1968)ADSCrossRefGoogle Scholar
  19. 19.
    A.G. Greenhill, Proc. Inst. Mech. Engrs. 1.10, 182 (1883)CrossRefGoogle Scholar
  20. 20.
    L.D. Landau, E.M. Lifshitz, Theory of Elasticity, 3rd ed. (Pergamon Press, Oxford, 1986)Google Scholar
  21. 21.
    T.R. Powers, Rev. Mod. Phys. 82, 1607 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    J.B. Keller, Phys. Fluids. 10, 3009 (1998)MathSciNetADSCrossRefMATHGoogle Scholar
  23. 23.
    M. Lalanne, P. Berthier, J. der Hagopian, Mechanical Vibrations for Engineers (Wiley-Interscience, 1983)Google Scholar
  24. 24.
    M.C. Lagomarsino, F. Capuania, C.P. Lowe, J. Theor. Biol. 224, 215 (2003)CrossRefGoogle Scholar
  25. 25.
    M. Roper, R. Dreyfus, J. Baudry, M. Fermigier, J. Bibette, H.A. Stone, J. Fluid Mech. 554, 167 (2006)MathSciNetADSCrossRefMATHGoogle Scholar
  26. 26.
    J. Gray, G.J. Hancock, J. Exp. Biol. 32, 802 (1955)Google Scholar
  27. 27.
    J. Lighthill, SIAM Rev. 18, 161 (1976)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Ghani Oukhaled
    • 1
  • Andrejs Cebers
    • 2
  • Jean-Claude Bacri
    • 1
  • Jean-Marc Di Meglio
    • 1
  • Charlotte Py
    • 1
    • 3
  1. 1.Laboratoire Matière et Systèmes Complexes, UMR 7057Université Paris Diderot and CNRSParisFrance
  2. 2.Institute of PhysicsUniversity of LatviaRigaLatvia
  3. 3.The Academy of BradylogistsBradylogistsFrance

Personalised recommendations