The European Physical Journal E

, 35:119

Nano-swimmers in biological membranes and propulsion hydrodynamics in two dimensions

  • Mu-Jie Huang
  • Hsuan-Yi Chen
  • Alexander S. Mikhailov
Regular Article
Part of the following topical collections:
  1. Active Matter

Abstract

Active protein inclusions in biological membranes can represent nano-swimmers and propel themselves in lipid bilayers. A simple model of an active inclusion with three particles (domains) connected by variable elastic links is considered. First, the membrane is modeled as a two-dimensional viscous fluid and propulsion behavior in two dimensions is examined. After that, an example of a microscopic dynamical simulation is presented, where the lipid bilayer structure of the membrane is resolved and the solvent effects are included by multiparticle collision dynamics. Statistical analysis of data reveals ballistic motion of the swimmer, in contrast to the classical diffusion behavior found in the absence of active transitions between the states.

Graphical abstract

Keywords

Regular Article - Topical issue: Active Matter 

Supplementary material

Supplementary material

References

  1. 1.
    E.M. Purcell, Am. J. Phys. 45, 3 (1977)ADSCrossRefGoogle Scholar
  2. 2.
    A. Shapere, F. Wilzcek, Phys. Rev. Lett. 58, 2051 (1987)ADSCrossRefGoogle Scholar
  3. 3.
    D. Tam, A. Hosoi, Phys. Rev. Lett. 98, 068105 (2007)ADSCrossRefGoogle Scholar
  4. 4.
    A. Najafi, R. Golestanian, Phys. Rev. E 69, 062901 (2004)ADSCrossRefGoogle Scholar
  5. 5.
    M. Iima, A.S. Mikhailov, EPL 85, 44001 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    S. Alonso, A.S. Mikhailov, Phys. Rev. E 79, 061906 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    T. Sakaue, R. Kapral, A.S. Mikhailov, Eur. Phys. J. B 75, 381 (2010)ADSCrossRefMATHGoogle Scholar
  8. 8.
    R. Golestanian, A. Ajdari, Phys. Rev. Lett. 100, 038101 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    R. Golestanian, Phys. Rev. Lett. 105, 018103 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    B. Alberts, Cell 92, 291 (1998)CrossRefGoogle Scholar
  11. 11.
    N. Kodera, D. Yamamoto, R. Ishikawa, T. Ando, Nature 468, 72 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    T. Uchinashi, R. Iino, T. Ando, H. Noji, Science 333, 755 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    H. Flechsig, A.S. Mikhailov, Proc. Natl. Acad. Sci. U.S.A. 107, 20875 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    C. Echeverria, Y. Togashi, A.S. Mikhailov, R. Kapral, Phys. Chem. Chem. Phys. 13, 10527 (2011)CrossRefGoogle Scholar
  15. 15.
    J. Prost, R. Bruinsma, EPL 33, 321 (1996)ADSCrossRefGoogle Scholar
  16. 16.
    S. Sankararaman, G.I. Menon, P.B. Sunil Kumar, Phys. Rev. E 66, 031914 (2002)ADSCrossRefGoogle Scholar
  17. 17.
    H.-Y. Chen, Phys. Rev. Lett. 92, 168101 (2004)ADSCrossRefGoogle Scholar
  18. 18.
    H.-Y. Chen, A.S. Mikhailov, Phys. Rev. E 81, 031901 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    P.G. Saffman, M. Delbruck, Proc. Natl. Acad. Sci. U.S.A. 72, 3111 (1975)ADSCrossRefGoogle Scholar
  20. 20.
    H. Diamant, J. Phys. Soc. Jpn. 78, 041002 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    G. Marchioro, M. Pulvirenti, Commun. Math. Phys. 84, 483 (1982)MathSciNetADSCrossRefMATHGoogle Scholar
  22. 22.
    M. Leoni, T.B. Liverpool, Phys. Rev. Lett. 105, 238102 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    M.-J. Huang, R. Kapral, A.S. Mikhailov, H.-Y. Chen, J. Chem. Phys. 137, 055101 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    B.L. de Groot, H. Grubmüller, Science 294, 2353 (2001)ADSCrossRefGoogle Scholar
  25. 25.
    R. Kapral, Adv. Chem. Phys. 140, 89 (2008)CrossRefGoogle Scholar
  26. 26.
    C.M. Pooley, G.P. Alexander, Y.M. Yeomans, Phys. Rev. Lett. 99, 228103 (2007)ADSCrossRefGoogle Scholar
  27. 27.
    A. Cressman, Y. Togashi, A.S. Mikhailov, R. Kapral, Phys. Rev. E 77, 050901 (2008)ADSCrossRefGoogle Scholar
  28. 28.
    A.S. Mikhailov, D. Meinköhn, Self-motion in physico-chemical systems far from thermal equilibrium, in Stochastic Dynamics, edited by L. Schimansky-Geier, Th. Pöschel, Springer Lect. Notes Phys., Vol. 484 (Springer, Berlin, 1997) pp. 336-345Google Scholar
  29. 29.
    J.R. Howse, R.A.L. Jones, A.J. Ryan, T. Gough, R. Vahabakhsh, R. Golestanian, Phys. Rev. Lett. 99, 048102 (2007)ADSCrossRefGoogle Scholar
  30. 30.
    B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, Molecular Biology of the Cell, 4th ed. (Garland, New York, 2002)Google Scholar
  31. 31.
    A. Malevanets, R. Kapral, J. Chem. Phys. 110, 8605 (1999)ADSCrossRefGoogle Scholar
  32. 32.
    G. Gompper, T. Ihle, D.M. Kroll, R.G. Winkler, Adv. Polym. Sci. 221, 1 (2009)Google Scholar
  33. 33.
    Y. Gambin, R. Lopez-Esparza, M. Reffay, E. Sierecki, N.S. Gov, M. Genest, R.S. Hodges, W. Urbach, Proc. Natl. Acad. Sci. U.S.A. 103, 2098 (2006)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Mu-Jie Huang
    • 1
  • Hsuan-Yi Chen
    • 1
    • 2
    • 3
  • Alexander S. Mikhailov
    • 4
  1. 1.Department of PhysicsNational Central UniversityJhongliTaiwan
  2. 2.Institute of PhysicsAcademia SinicaTaipeiTaiwan
  3. 3.Physics DivisionNational Center for Theoretical SciencesHsinchuTaiwan
  4. 4.Abteilung Physikalische ChemieFritz-Haber-Institut der Max-Planck-GesellschaftBerlinGermany

Personalised recommendations