Instabilities and diffusion in a hydrodynamic model of a fluid membrane coupled to a thin active fluid layer

  • N. SarkarEmail author
  • A. Basu
Regular Article
Part of the following topical collections:
  1. Active Matter


We construct a coarse-grained effective two-dimensional (2d hydrodynamic theory as a theoretical model for a coupled system of a fluid membrane and a thin layer of a polar active fluid in its ordered state that is anchored to the membrane. We show that such a system is prone to generic instabilities through the interplay of nonequilibrium drive, polar order and membrane fluctuation. We use our model equations to calculate diffusion coefficients of an inclusion in the membrane and show that their values depend strongly on the system size, in contrast to their equilibrium values. Our work extends the work of S. Sankararaman and S. Ramaswamy (Phys. Rev. Lett., 102, 118107 (2009)) to a coupled system of a fluid membrane and an ordered active fluid layer. Our model is broadly inspired by and should be useful as a starting point for theoretical descriptions of the coupled dynamics of a cell membrane and a cortical actin layer anchored to it.

Graphical abstract


Regular Article - Topical issue: Active Matter 


  1. 1.
    U. Seifert, Adv. Phys. 46, 13 (1997)ADSCrossRefGoogle Scholar
  2. 2.
    W. Helfrich, J. Phys. (Paris) 46, 1263 (1985)CrossRefGoogle Scholar
  3. 3.
    H.J. Deuling, W. Helfrich, J. Phys. (Paris) 37, 1335 (1976)CrossRefGoogle Scholar
  4. 4.
    S. Ramaswamy, J. Prost, T.C. Lubensky, Europhys. Lett. 27, 285 (1994)ADSCrossRefGoogle Scholar
  5. 5.
    S. Ramaswamy, J. Prost, T.C. Lubensky, Europhys. Lett. 23, 271 (1993)ADSCrossRefGoogle Scholar
  6. 6.
    B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, J.D. Watson, Molecular Biology of the Cell, 3rd edition (Garland, New York, 1994), Chap. 10Google Scholar
  7. 7.
    S.J. Singer, G.L. Nicolson, Science 175, 720 (1972)ADSCrossRefGoogle Scholar
  8. 8.
    S. Ramaswamy, M. Rao, C. R. Acad. Sci. Paris, Ser. IV 2, 917 (2001)Google Scholar
  9. 9.
    M.J. Saxton, K. Jacobson, Annu. Rev. Biophys. Biomol. Struct. 26, 373 (1997)CrossRefGoogle Scholar
  10. 10.
    M.J. Saxton, Int. J. Biochem. 22, 801 (1990)CrossRefGoogle Scholar
  11. 11.
    S. Levin, R. Korenstein, Biophys. J. 60, 733 (1991)ADSCrossRefGoogle Scholar
  12. 12.
    S. Tuvia, A. Almagor, A. Bitler, S. Levin, R. Korenstein, S. Yedgar, Proc. Natl. Acad. Sci. U.S.A. 94, 5045 (1997)ADSCrossRefGoogle Scholar
  13. 13.
    M. Edidin, Annu. Rev. Biophys. Bioeng. 3, 179 (1974)CrossRefGoogle Scholar
  14. 14.
    J.-B. Manneville, P. Bassereau, S. Ramaswamy, J. Prost, Phys. Rev. E 64, 021908 (2001)ADSCrossRefGoogle Scholar
  15. 15.
    R. Shlomovitz, N.S. Gov, Phys. Rev. Lett. 98, 168103 (2007)ADSCrossRefGoogle Scholar
  16. 16.
    J. Zimmermann et al., Biophys. J 102, 287 (2012)CrossRefGoogle Scholar
  17. 17.
    N.S. Gov, Phys. Rev. E 73, 041918 (2006)ADSCrossRefGoogle Scholar
  18. 18.
    A. Naji, F.L.H. Brown, J. Chem. Phys. 126, 235103 (2007)ADSCrossRefGoogle Scholar
  19. 19.
    J. Pécréaux, H.-G. Döbereiner, J. Prost, J.-F. Joanny, P. Bassereau, Eur. Phys. J. E 13, 277 (2004)CrossRefGoogle Scholar
  20. 20.
    F.-C. Tsai, B. Stuhrmann, G.H. Koendrink, Langmuir 27, 10061 (2011)CrossRefGoogle Scholar
  21. 21.
    R.A. Simha, S. Ramaswamy, Phys. Rev. Lett. 89, 058101 (2002)ADSCrossRefGoogle Scholar
  22. 22.
    K. Kruse, J.F. Joanny, F. Jülicher, J. Prost, K. Sekimoto, Eur. Phys. J. E 16, 5 (2005)CrossRefGoogle Scholar
  23. 23.
    S. Ramaswamy, Annu. Rev. Condens. Matter. Phys. 1, 323 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    G.I. Menon, arXiv:1003.2032
  25. 25.
    J.-F. Joanny, J. Prost, in Biological Physics, Poincaré Seminar 2009, edited by B. Duplantier, V. Rivasseau (Springer, 2009) pp. 1-32Google Scholar
  26. 26.
    M.C. Marchetti, arXiv:1207.2929
  27. 27.
    G. Salbreux, J. Prost, J.-F. Joanny, Phys. Rev. Lett. 103, 058102 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    M. Mayer et al., Nature (London) 467, 617 (2010)ADSCrossRefGoogle Scholar
  29. 29.
    J.S. Bois, F. Jülicher, S.W. Grill, Phys. Rev. Lett. 106, 028103 (2011)ADSCrossRefGoogle Scholar
  30. 30.
    A. Zumdieck, K. Kruse, H. Bringmann, A.A. Hyman, F. Jülicher, PLoS ONE 2, e696 (2007)ADSCrossRefGoogle Scholar
  31. 31.
    H.-G. Döbereiner et al., Phys. Rev. Lett. 97, 38102 (2006)CrossRefGoogle Scholar
  32. 32.
    S. Sankararaman, S. Ramaswamy, Phys. Rev. Lett. 102, 118107 (2009)ADSCrossRefGoogle Scholar
  33. 33.
    M.H. Köpf, S.V. Gurevich, T. Wulf, R. Friedrich, Phys. Rev. E 83, 040601 (R) (2011)CrossRefGoogle Scholar
  34. 34.
    P.G. Saffman, M. Delbrück, Proc. Nat. Acad. Sci., U.S.A. 72, 3111 (1975)ADSCrossRefGoogle Scholar
  35. 35.
    P.-G. de Gennes, J. Prost, The Physics of Liquid Crystals (Clarendon, Oxford, 1993)Google Scholar
  36. 36.
    D. Nelson, T. Piran, S. Weinberg (Editors), Statistical Mechanics of Membranes and Surfaces (World Scientific, Singapore, 1989)Google Scholar
  37. 37.
    H.A. Stone, in Nonlinear PDEs in Condensed Matter and Reactive Flows, NATO Science Series C: Mathematical and Physical Sciences, Vol. 569, edited by H. Berestycki, Y. Pomeau (Kluwer Academic, Dordrecht, The Netherlands, 2002)Google Scholar
  38. 38.
    A. Oron, S.H. Davis, S.G. Bankoff, Rev. Mod. Phys. 69, 931 (1997)ADSCrossRefGoogle Scholar
  39. 39.
    T.C. Lubensky, F.C. MacKintosh, Phys. Rev. Lett. 71, 1565 (1993)ADSCrossRefGoogle Scholar
  40. 40.
    Hence for wave vector range given by $\eta q^2 \sim \eta' q/h_0$, i.e., when the ambient fluid is expected to become important, our results are not expected to holdGoogle Scholar
  41. 41.
    R.A. Simha, S. Ramaswamy, Phys. Rev. Lett. 89, 058101 (2002)ADSCrossRefGoogle Scholar
  42. 42.
    Thermal noise $\xi_{\theta}$ has variance proportional to the inverse of the rotational viscosity, which we assume to be numerically the same as $\eta$ for simplicity.Google Scholar
  43. 43.
    R.A. Simha, S. Ramaswamy, Phys. Rev. Lett. 89, 058101 (2002)ADSCrossRefGoogle Scholar
  44. 44.
    R. Reigada, J. Gomez, Biophys. Rev. Lett. 5, 1 (2010)CrossRefGoogle Scholar
  45. 45.
    M. Bornens, M. Paintrand, C. Celati, J. Cell Biol. 109, 1071 (1989)CrossRefGoogle Scholar
  46. 46.
    O.J. Pletjushkina, Z. Rajfur, P. Pomorski, T.N. Oliver, J.M. Vasiliev, K.A. Jacobson, Cell Motil. Cytoskel. 48, 235 (2001)CrossRefGoogle Scholar
  47. 47.
    F. Jülicher, J. Prost, Phys. Rev. Lett. 78, 4510 (1997)ADSCrossRefGoogle Scholar
  48. 48.
    R. Voituriez, J.-F. Joanny, J. Prost, Europhys. Lett. 70, 404 (2005)ADSCrossRefGoogle Scholar
  49. 49.
    N. Sarkar, A. Basu, Eur. Phys. J. E 34, 44 (2011)ADSCrossRefGoogle Scholar
  50. 50.
    S. Chiantia, J. Ries, P. Schwille, BBA-Biomembranes 1788, 225 (2009)CrossRefGoogle Scholar
  51. 51.
    P.H.M. Lommerse, H.P. Spaink, T. Schmidt, BBA-Biomembranes 1664, 119 (2004)CrossRefGoogle Scholar
  52. 52.
    E.A.J. Reits, J.J. Neefjes, Nat. Cell Biol. 3, E145 (2001)CrossRefGoogle Scholar
  53. 53.
    C.W. Cairo, D.E. Golan, Biopolymers 89, 409 (2008)CrossRefGoogle Scholar
  54. 54.
    H. Lamb, Hydrodynamics (Cambridge University Press, 1959)Google Scholar
  55. 55.
    E. Reister-Gottfried, S.M. Leitenberger, U. Seifert, Phys. Rev. E 81, 031903 (2010)ADSCrossRefGoogle Scholar
  56. 56.
    J. Toner, Y. Tu, Phys. Rev. E 58, 4828 (1998)MathSciNetADSCrossRefGoogle Scholar
  57. 57.
    N. Sarkar, A. Basu, work in progressGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Theoretical Condensed Matter Physics DivisionSaha Institute of Nuclear PhysicsCalcuttaIndia

Personalised recommendations