Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Modelling the fluid mechanics of cilia and flagella in reproduction and development

Abstract

Cilia and flagella are actively bending slender organelles, performing functions such as motility, feeding and embryonic symmetry breaking. We review the mechanics of viscous-dominated microscale flow, including time-reversal symmetry, drag anisotropy of slender bodies, and wall effects. We focus on the fundamental force singularity, higher-order multipoles, and the method of images, providing physical insight and forming a basis for computational approaches. Two biological problems are then considered in more detail: 1) left-right symmetry breaking flow in the node, a microscopic structure in developing vertebrate embryos, and 2) motility of microswimmers through non-Newtonian fluids. Our model of the embryonic node reveals how particle transport associated with morphogenesis is modulated by the gradual emergence of cilium posterior tilt. Our model of swimming makes use of force distributions within a body-conforming finite-element framework, allowing the solution of nonlinear inertialess Carreau flow. We find that a three-sphere model swimmer and a model sperm are similarly affected by shear-thinning; in both cases swimming due to a prescribed beat is enhanced by shear-thinning, with optimal Deborah number around 0.8. The sperm exhibits an almost perfect linear relationship between velocity and the logarithm of the ratio of zero to infinite shear viscosity, with shear-thickening hindering cell progress.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    G.I. Taylor, Proc. R. Soc. London, Ser. A, 447 (1951).

  2. 2.

    W. Engelmann, Über die flimmerbewegung (Engelmann, 1868).

  3. 3.

    M. Verworn, Pflugers Arch. 48, 149 (1891).

  4. 4.

    G.H. Parker, J. Exp. Zool. 2, 407 (1905).

  5. 5.

    J. Gray, Ciliary movement, Cambridge Comparative Physiology (Cambridge University Press, 1928).

  6. 6.

    G.J. Hancock, Proc. R. Soc. London, Ser. A 217, 96 (1953).

  7. 7.

    S. Nonaka, Y. Tanaka, Y. Okada, S. Takeda, A. Harada, Y. Kanai, M. Kido, N. Hirokawa, Cell 95, 829 (1998).

  8. 8.

    I. Manton, B. Clarke, J. Exp. Biol. 3, 265 (1952).

  9. 9.

    D.W. Fawcett, Laryngoscope 64, 557 (1954).

  10. 10.

    B. Afzelius, J. Biophys. Biochem. Cytol. 5, 269 (1959).

  11. 11.

    P. Satir, J. Cell Biol. 26, 805 (1965).

  12. 12.

    E.M. Purcell, Am. J. Phys. 45, 3 (1977).

  13. 13.

    T. Montenegro-Johnson, D.J. Smith, D. Loghin, Modelling microscopic swimming in shear-thinning fluids, submitted (2012).

  14. 14.

    A. Najafi, R. Golestanian, Phys. Rev. E 69, 062901 (2004).

  15. 15.

    D.W. Fawcett, Dev. Biol. 44, 394 (1975).

  16. 16.

    N. Hirokawa, Y. Tanaka, Y. Okada, S. Takeda, Cell 125, 33 (2006).

  17. 17.

    S. Nonaka, S. Yoshiba, D. Watanabe, S. Ikeuchi, T. Goto, W.F. Marshall, H. Hamada, PLoS Biol. 3, 1467 (2005).

  18. 18.

    D.J. Smith, A.A. Smith, J.R. Blake, J. Eng. Math. 70, 255 (2011).

  19. 19.

    J. Gray, G.J. Hancock, J. Exp. Biol. 32, 802 (1955).

  20. 20.

    O.S. Pak, E. Lauga, Phys. Fluids 23, 081702 (2011).

  21. 21.

    J.R. Blake, M.A. Sleigh, Biol. Rev. Camb. Phil. Soc. 49, 85 (1974).

  22. 22.

    A.T. Chwang, T.Y. Wu, Proc. R. Soc. London, Ser. B 178, 327 (1971).

  23. 23.

    J.R. Blake, Proc. Camb. Phil. Soc. 70, 303 (1971).

  24. 24.

    A. Vilfan, F. Jülicher, Phys. Rev. Lett. 96, 58102 (2006).

  25. 25.

    K. Drescher, R.E. Goldstein, N. Michel, M. Polin, I. Tuval, Phys. Rev. Lett. 105, 168101 (2010).

  26. 26.

    K. Drescher, J. Dunkel, L.H. Cisneros, S. Ganguly, R.E. Goldstein, Proc. Natl. Acad. Sci. U.S.A. 108, 10940 (2011).

  27. 27.

    D.J. Smith, J.R. Blake, Math. Sci. 34, 74 (2009).

  28. 28.

    D.J. Smith, E.A. Gaffney, J.R. Blake, B. Math. Biol. 69, 1477 (2007).

  29. 29.

    R.H. Dillon, L.J. Fauci, C. Omoto, X. Yang, Annu. N. Y. Acad. Sci. 1101, 494 (2007).

  30. 30.

    E. Lauga, T.R. Powers, Rep. Prog. Phys. 72, 096601 (2009).

  31. 31.

    E.A. Gaffney, H. Gadêlha, D.J. Smith, J.R. Blake, J.C. Kirkman-Brown, Annu. Rev. Fluid Mech. 43, 501 (2011).

  32. 32.

    N. Hirokawa, Y. Okada, Y. Tanaka, Annu. Rev. Fluid Mech. 41, 53 (2009).

  33. 33.

    W.E. Berdon, C. McManus, B. Afzelius, Pediat. Radiol. 34, 585 (2004).

  34. 34.

    A. Hilfinger, F. Jülicher, Phys. Biol. 5, 016003 (2008).

  35. 35.

    J.H.E. Cartwright, O. Piro, I. Tuval, Proc. Natl. Acad. Sci. U.S.A. 101, 7234 (2004).

  36. 36.

    C.J. Brokaw, Cell Motil. Cytoskel. 60, 35 (2005).

  37. 37.

    D.J. Smith, J.R. Blake, E.A. Gaffney, J. R. Soc. Interface 5, 567 (2008).

  38. 38.

    M. Hashimoto, K. Shinohara, J. Wang, S. Ikeuchi, S. Yoshiba, C. Meno, S. Nonaka, S. Takada, K. Hatta, A. Wynshaw-Boris et al., Nat. Cell Biol. 12, 170 (2010).

  39. 39.

    K.M. Downs, T. Davies, Development 118, 1255 (1993).

  40. 40.

    R.E. Johnson, J. Fluid Mech. 99, 411 (1980).

  41. 41.

    J.R. Blake, A.T. Chwang, J. Eng. Math. 8, 23 (1974).

  42. 42.

    A.T. Chwang, T.Y. Wu, J. Fluid Mech. 67, 787 (1975).

  43. 43.

    R. Cortez, SIAM J. Sci. Comput. 23, 1204 (2001).

  44. 44.

    R. Cortez, L. Fauci, A. Medovikov, Phys. Fluids 17, 1 (2005).

  45. 45.

    J. Ainley, S. Durkin, R. Embid, P. Boindala, R. Cortez, J. Comput. Phys. 227, 4600 (2008).

  46. 46.

    D.J. Smith, Proc. R. Soc. London, Ser. A 465, 3605 (2009).

  47. 47.

    R.N. Mills, D.F. Katz, Fertil. Steril. 29, 43 (1978).

  48. 48.

    D.F. Katz, J.W. Overstreet, F.W. Hanson, Fertil. Steril. 33, 179 (1980).

  49. 49.

    H.C. Fu, C.W. Wolgemuth, T.R. Powers, Phys. Fluids 21, 033102 (2009).

  50. 50.

    J. Teran, L. Fauci, M. Shelley, Phys. Rev. Lett. 104, 38101 (2010).

  51. 51.

    P.J. Carreau, Rheological equations from molecular network theories (University of Wisconsin-Madison, 1968).

  52. 52.

    D. Braess, Finite elements: theory, fast solvers, and applications in solid mechanics (Cambridge University Press, 2007).

  53. 53.

    T. Papanastasiou, N. Malamataris, K. Ellwood, Int. J. Numer. Meth. Fluids 14, 587 (1992).

  54. 54.

    J. Baranger, K. Najib, Numer. Math. 58, 35 (1990).

  55. 55.

    J. Barrett, W. Liu, Numer. Math. 64, 433 (1993).

  56. 56.

    C. Taylor, P. Hood, Comput. Fluids 1, 73 (1973).

  57. 57.

    D.J. Smith, E.A. Gaffney, H. Gadêlha, N. Kapur, J.C. Kirkman-Brown, Cell Motil. Cytoskel. 66, 220 (2009).

  58. 58.

    J.J.L. Higdon, J. Fluid Mech. 90, 685 (1979).

  59. 59.

    F. Bashforth, J.C. Adams, An attempt to test the theories of capillary action: by comparing the theoretical and measured forms of drops of fluid (Cambridge University Press, 1883).

  60. 60.

    A. Iserles, A first course in the numerical analysis of differential equations (Cambridge University Press, 2009).

  61. 61.

    J.H.E. Cartwright, O. Piro, I. Tuval, HFSP J. 3, 77 (2009).

Download references

Author information

Correspondence to David J. Smith.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Montenegro-Johnson, T.D., Smith, A.A., Smith, D.J. et al. Modelling the fluid mechanics of cilia and flagella in reproduction and development. Eur. Phys. J. E 35, 111 (2012). https://doi.org/10.1140/epje/i2012-12111-1

Download citation

Keywords

  • Regular Article - Topical issue: Active Matter