Advertisement

Reverse buoyancy in a vibrated granular bed: Computer simulations

  • Vladimir Idler
  • Iván Sánchez
  • Ricardo Paredes
  • Robert Botet
Regular Article

Abstract

We have performed molecular dynamics simulations of an intruder in a vibrated granular bed including interstitial fluid effects to account for the phenomenon of reverse buoyancy. We show that our model is able to reproduce the overall behaviour observed by previous experimental works and is the first finite-elements simulation to show the sinking of intruders lighter than the granular bed. To further advance our comprehension of this phenomenon, we studied the motion of the intruders in a single vibration cycle with respect to the bottom of the granular column, finding a substantial qualitative difference for heavy and light intruders and we compare these results with experiments using fine-sized glass beads. We show that, though heavy intruders seem unaffected by the force due to the fluid, the effect on light intruders is remarkable.

Keywords

Flowing Matter: Granular Matter 

References

  1. 1.
    A. Rosato, K.J. Strandburg, F. Prinz, R.H. Swendsen, Phys. Rev. Lett. 58, 1038 (1987).MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    T. Shinbrot, F.J. Muzzio, Phys. Rev. Lett. 81, 4365, (1998).ADSCrossRefGoogle Scholar
  3. 3.
    X. Yan, Q. Shi, M. Hou, K. Lu, C.K. Chan, Phys. Rev. Lett. 91, 014302 (2003).ADSCrossRefGoogle Scholar
  4. 4.
    M.E. Möbius, X. Cheng, G.S. Karczmar, S.R. Nagel, H.M. Jaeger, Phys. Rev. Lett. 93, 198001 (2004).ADSCrossRefGoogle Scholar
  5. 5.
    G. Gutiérrez, O. Pozo, L.I. Reyes, R. Paredes, J.F. Drake, E. Ott, Europhys. Lett. 67, 369 (2004).ADSCrossRefGoogle Scholar
  6. 6.
    M.E. Möbius, X. Cheng, P. Eshuis, G.S. Karczmar, S.R. Nagel, H.M. Jaeger, Phys. Rev. E 72, 011304 (2005).ADSCrossRefGoogle Scholar
  7. 7.
    I. Sánchez, G. Gutiérrez, I. Zuriguel, Diego Maza, Phys. Rev. E 81, 062301 (2010).ADSCrossRefGoogle Scholar
  8. 8.
    A. Rosato, F. Prinz, K.J. Strandburg, R.H. Swendsen, Powder Technol. 49, 59 (1986).CrossRefGoogle Scholar
  9. 9.
    J. Duran, J. Rajchenbach, E. Clément, Phys. Rev. Lett. 70, 2431 (1993).ADSCrossRefGoogle Scholar
  10. 10.
    J.B. Knight, H.M. Jaeger, S.R. Nagel, Phys. Rev. Lett. 70, 3728 (1993).ADSCrossRefGoogle Scholar
  11. 11.
    J. Duran, T. Mazozi, E. Clément, J. Rajchenbach, Phys. Rev. E 50, 5138 (1994).ADSCrossRefGoogle Scholar
  12. 12.
    J. Javier Brey, M.J. Ruiz-Montero, F. Moreno, Phys. Rev. Lett. 95, 098001 (2005).ADSCrossRefGoogle Scholar
  13. 13.
    V. Garzó, Europhys. Lett. 75, 521 (2006).ADSCrossRefGoogle Scholar
  14. 14.
    L. Trujillo, H.J. Herrmann, Physica A 330, 519 (2003).MathSciNetADSCrossRefMATHGoogle Scholar
  15. 15.
    C.P. Clement, H.A. Pacheco-Martínez, M.R. Swift, P.J. King, EPL 91, 54001 (2010).ADSCrossRefGoogle Scholar
  16. 16.
    C. Liu, L. Wang, P. Wu, M. Jia, Phys. Rev. Lett. 104, 188001 (2010).ADSCrossRefGoogle Scholar
  17. 17.
    M.A. Naylor, M.R. Swift, P.J. King, Phys. Rev. E 68, 012301 (2003).ADSCrossRefGoogle Scholar
  18. 18.
    M.P. Ciamarra, Maria D. De Vizia, A. Fierro, M. Tarzia, A. Coniglio, M. Nicodemi, Phys. Rev. Lett. 96, 058001 (2006).ADSCrossRefGoogle Scholar
  19. 19.
    H.J. Herrmann, S. Luding, Cont. Mech. Thermodyn. 10, 189 (1998).MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    J.A.C. Gallas, H.J. Herrmann, T. Pöschel, S. Sokolowski, Physica A 189, 437 (1992).ADSCrossRefGoogle Scholar
  21. 21.
    J.A.C. Gallas, H.J. Herrmann, S. Sokolowski, Int. J. Mod. Phys. 7, 1779 (1993).ADSCrossRefGoogle Scholar
  22. 22.
    X. Fang, J. Tang, J. Vib. Cont. 13, 711 (2007).CrossRefMATHGoogle Scholar
  23. 23.
    E. Lim, AIChE J. 56, 2588 (2010).CrossRefGoogle Scholar
  24. 24.
    J.J. Wylie, Q. Zhang, H.Y. Xu, X.X. Sun, EPL 81, 54001 (2008).ADSCrossRefGoogle Scholar
  25. 25.
    Jin Sun, F. Battaglia, S. Subramaniam, Phys. Rev. E 74, 061307 (2006).ADSCrossRefGoogle Scholar
  26. 26.
    V. Idler, I. Sánchez, R. Paredes, G. Gutiérrez, L.I. Reyes, R. Botet, Phys. Rev. E 79, 051301 (2009).ADSCrossRefGoogle Scholar
  27. 27.
    D.A. Huerta, J.C. Ruiz-Suárez, Phys. Rev. Lett. 92, 114301 (2004).ADSCrossRefGoogle Scholar
  28. 28.
    P. Biswas, P. Sánchez, M.R. Swift, P.J. King, Phys. Rev. E 68, 050301-1 (2003).ADSCrossRefGoogle Scholar
  29. 29.
    S. McNamara, E.G. Flekkøy, K.J. Måløy, Phys. Rev. E 61, 4054 (2000).ADSCrossRefGoogle Scholar
  30. 30.
    Y. Guguen, V. Palciauskas, Introduction to Physics of Rocks (Princeton University Press, Princeton, 1994).Google Scholar
  31. 31.
    J. Ellenberger, C.O. Vandu, R. Krishna, Powder Technol. 164, 168 (2006).CrossRefGoogle Scholar
  32. 32.
    R.N. Dave, J. Volcy, J. Agarwal, V. Gupta, Rev. Sci. Instrum. 69, 3606 (1998).ADSCrossRefGoogle Scholar
  33. 33.
    G. Gutiérrez, L.I. Reyes, I. Sánchez, K. Rodrí guez, V. Idler, R. Paredes, Physica A 356, 83 (2005).ADSCrossRefGoogle Scholar
  34. 34.
    S. Warr, G. Jacques, J. Huntley, Powder Technol. 81, 41 (1994).CrossRefGoogle Scholar
  35. 35.
    R.D. Hryciw, S.A. Raschke, A.M. Ghalib, D.A. Horner, J.F. Peters, Comput. Geotec. 21, 235 (1997).CrossRefGoogle Scholar
  36. 36.
    R.G. Gutman, Trans. Inst. Chem. Engrs. 54, 174 (1976).Google Scholar
  37. 37.
    T. Akiyama, T. Naito, Chem. Eng. Sci. 42, 1305 (1987).CrossRefGoogle Scholar
  38. 38.
    J. Duran, J. Rajchenbach, E. Clément, Phys. Rev. Lett. 70, 2431 (1993).ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Vladimir Idler
    • 1
  • Iván Sánchez
    • 2
  • Ricardo Paredes
    • 3
  • Robert Botet
    • 4
  1. 1.Departamento de FísicaUniversidad Simón BolívarCaracas 1080-AVenezuela
  2. 2.Centro de FísicaInstituto Venezolano de Investigaciones CientíficasCaracas 1020-AVenezuela
  3. 3.Academia Nacional de Investigación y Desarrollo A.C.Cuernavaca, MorelosMéxico
  4. 4.Laboratoire de Physique des Solides Bâtiment 510CNRS UMR8502, Université Paris-SudOrsayFrance

Personalised recommendations