Advertisement

Bulk rheology and microrheology of active fluids

  • G. Foffano
  • J. S. Lintuvuori
  • A. N. Morozov
  • K. Stratford
  • M. E. Cates
  • D. MarenduzzoEmail author
Regular Article
Part of the following topical collections:
  1. Active Matter

Abstract

We simulate macroscopic shear experiments in active nematics and compare them with microrheology simulations where a spherical probe particle is dragged through an active fluid. In both cases we define an effective viscosity: in the case of bulk shear simulations this is the ratio between shear stress and shear rate, whereas in the microrheology case it involves the ratio between the friction coefficient and the particle size. We show that this effective viscosity, rather than being solely a property of the active fluid, is affected by the way chosen to measure it, and strongly depends on details such as the anchoring conditions at the probe surface and on both the system size and the size of the probe particle.

Graphical abstract

Keywords

Topical contribution 

References

  1. 1.
    S. Ramaswamy, Annu. Rev. Condens. Matter 1, 323 (2010)ADSCrossRefGoogle Scholar
  2. 2.
    D. Marenduzzo et al., Phys. Rev. E 76, 031921 (2007)ADSCrossRefGoogle Scholar
  3. 3.
    E. Tjhung, M.E. Cates, D. Marenduzzo, Soft Matter 7, 7453 (2011)ADSCrossRefGoogle Scholar
  4. 4.
    M.E. Cates, O. Henrich, D. Marenduzzo, K. Stratford, Soft Matter 5, 3791 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    R. Voituriez, J.F. Joanny, J. Prost, Europhys. Lett. 70, 404 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    R. Voituriez, J.F. Joanny, J. Prost, Phys. Rev. Lett. 96, 028102 (2006)ADSCrossRefGoogle Scholar
  7. 7.
    C. Dombrowski et al., Phys. Rev. Lett. 93, 098103 (2004)ADSCrossRefGoogle Scholar
  8. 8.
    Y. Hatwalne, S. Ramaswamy, M. Rao, R.A. Simha, Phys. Rev. Lett. 92, 118101 (2004)ADSCrossRefGoogle Scholar
  9. 9.
    T.B. Liverpool, M.C. Marchetti, Phys. Rev. Lett. 97, 268101 (2006)ADSCrossRefGoogle Scholar
  10. 10.
    M.E. Cates et al., Phys. Rev. Lett. 101, 068102 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    S. Rafai, L. Jibuti, P. Peyla, Phys. Rev. Lett. 104, 098102 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    A. Sokolov, I.S. Aranson, Phys. Rev. Lett. 103, 14810 (2009)Google Scholar
  13. 13.
    T.A. Waigh, Rep. Prog. Phys. 68, 685 (2005)ADSCrossRefGoogle Scholar
  14. 14.
    D. Bray, Cell Movements: From Molecules to Motility, 2nd edition (Garland Publishing, New York, 2000)Google Scholar
  15. 15.
    D.T.N. Chen et al., Phys. Rev. Lett. 99, 148302 (2007)ADSCrossRefGoogle Scholar
  16. 16.
    D. Mizuno, C. Tardin, C.F. Schmidt, F.C. MacKintosh, Science 315, 370 (2007)ADSCrossRefGoogle Scholar
  17. 17.
    G. Foffano, J.S. Lintuvuori, K. Stratford, M.E. Cates, D. Marenduzzo, Phys. Rev. Lett. 109, 028103 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    P.G. de Gennes, J. Prost, The Physics of Liquid Crystals, 2nd edition (Clarendon Press, Oxford, 1993)Google Scholar
  19. 19.
    J. Elgeti, M.E. Cates, D. Marenduzzo, Soft Matter 7, 3177 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    M. Nobili, G. Durand, Phys. Rev. A 46, R6174 (1992)ADSCrossRefGoogle Scholar
  21. 21.
    J.S. Lintuvuori, D. Marenduzzo, K. Stratford, M.E. Cates, J. Mater. Chem. 20, 10547 (2010)CrossRefGoogle Scholar
  22. 22.
    J.S. Lintuvuori, K. Stratford, M.E. Cates, D. Marenduzzo, Phys. Rev. Lett. 105, 178302 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    J.-B. Fournier, P. Galatola, Europhys. Lett. 72, 403 (2005)ADSCrossRefGoogle Scholar
  24. 24.
    J.S. Lintuvuori, K. Stratford, M.E. Cates, D. Marenduzzo, Phys. Rev. Lett. 107, 267802 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    M. Conradi et al., Soft Matter 5, 3905 (2009)ADSCrossRefGoogle Scholar
  26. 26.
    A.N. Beris, B.J. Edwards, Thermodynamics of Flowing Systems (Oxford University Press, Oxford, 1994)Google Scholar
  27. 27.
    K. Stratford, R. Adhikari, I. Pagonarrabaga, J.-C. Desplat, J. Stat. Phys. 121, 163 (2005)MathSciNetADSCrossRefzbMATHGoogle Scholar
  28. 28.
    B. Rubinstein, M.F. Fournier, K.J. Jacobson, A.B. Verkhovsky, A. Mogilner, Biophys. J. 97, 1853 (2009)ADSCrossRefGoogle Scholar
  29. 29.
    M.S. Silva et al., Proc. Natl. Acad. Sci. U.S.A. 108, 9408 (2011)ADSCrossRefGoogle Scholar
  30. 30.
    S. Wang, P.G. Wolynes, Proc. Natl. Acad. Sci. U.S.A. 109, 6446 (2012)ADSCrossRefGoogle Scholar
  31. 31.
    L. Giomi, M.C. Marchetti, Soft Matter 8, 129 (2012)ADSCrossRefGoogle Scholar
  32. 32.
    S.M. Fielding, D. Marenduzzo, M.E. Cates, Phys. Rev. E 83, 041910 (2010)ADSCrossRefGoogle Scholar
  33. 33.
    H. Hasimoto, J. Fluid. Mech. 5, 317 (1959)MathSciNetADSCrossRefzbMATHGoogle Scholar
  34. 34.
    H. Stark, D. Ventzki, Phys. Rev. E 64, 031711 (2001)ADSCrossRefGoogle Scholar
  35. 35.
    J.C. Loudet, P. Hanusse, P. Poulin, Science 306, 1525 (2004)CrossRefGoogle Scholar
  36. 36.
    S. Ramaswamy, M. Rao, New J. Phys. 9, 423 (2007)ADSCrossRefGoogle Scholar
  37. 37.
    A. Yao, M. Tassieri, P. Miles, J. Cooper, Lab Chip 9, 2568 (2009)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • G. Foffano
    • 1
  • J. S. Lintuvuori
    • 1
  • A. N. Morozov
    • 1
  • K. Stratford
    • 2
  • M. E. Cates
    • 1
  • D. Marenduzzo
    • 1
    Email author
  1. 1.SUPA, School of Physics and AstronomyUniversity of EdinburghEdinburghUK
  2. 2.EPCC, School of Physics and AstronomyUniversity of EdinburghEdinburghUK

Personalised recommendations