1.

R. Jones, S. Kumar, D. Ho, R. Briber, T. Russel, Nature

**400**, 146 (1999).

ADSCrossRefGoogle Scholar2.

S. Granick, S. Kumar, E. Amis

*et al.*, J. Polym. Sci. B

**41**, 2755 (2003).

CrossRefGoogle Scholar3.

P. O'Connell, G. McKenna, Science

**307**, 1760 (2005).

ADSCrossRefGoogle Scholar4.

P.G. de Gennes, Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca, New York, 1979).

5.

B. Duplantier, J. Stat. Phys.

**54**, 581 (1989).

MathSciNetADSCrossRefGoogle Scholar6.

A.N. Semenov, A. Johner, Eur. Phys. J. E

**12**, 469 (2003).

CrossRefGoogle Scholar7.

I. Carmesin, K. Kremer, J. Phys. (Paris)

**51**, 915 (1990).

CrossRefGoogle Scholar8.

P.H. Nelson, T.A. Hatton, G. Rutledge, J. Chem. Phys.

**107**, 1269 (1997).

ADSCrossRefGoogle Scholar9.

A. Yethiraj, Macromolecules

**36**, 5854 (2003).

ADSCrossRefGoogle Scholar10.

A. Cavallo, M. Müller, K. Binder, Europhys. Lett.

**61**, 214 (2003).

ADSCrossRefGoogle Scholar11.

A. Cavallo, M. Müller, K. Binder, J. Phys. Chem. B

**109**, 6544 (2005).

CrossRefGoogle Scholar12.

H. Meyer, T. Kreer, M. Aichele, A. Cavallo, A. Johner, J. Baschnagel, J.P. Wittmer, Phys. Rev. E

**79**, 050802(R) (2009).

ADSCrossRefGoogle Scholar13.

H. Meyer, J.P. Wittmer, T. Kreer, A. Johner, J. Baschnagel, J. Chem. Phys.

**132**, 184904 (2010).

ADSCrossRefGoogle Scholar14.

H. Meyer, N. Schulmann, J.E. Zabel, J.P. Wittmer, Comput. Phys. Commun.

**182**, 1949 (2011).

ADSCrossRefGoogle Scholar15.

N. Schulmann, H. Meyer, J.P. Wittmer, A. Johner, J. Baschnagel, Macromolecules

**45**, 1646 (2012).

ADSCrossRefGoogle Scholar16.

J.P. Wittmer, H. Meyer, A. Johner, T. Kreer, J. Baschnagel, Phys. Rev. Lett.

**105**, 037802 (2010).

ADSCrossRefGoogle Scholar17.

B. Maier, J.O. Rädler, Macromolecules

**33**, 7185 (2000).

ADSCrossRefGoogle Scholar18.

G.T. Gavranovic, J.M. Deutsch, G.G. Fuller, Macromolecules

**38**, 6672 (2005).

ADSCrossRefGoogle Scholar19.

F. Sun, A. Dobrynin, D. Shirvanyants, H. Lee, K. Matyjaszewski, G. Rubinstein, M. Rubinstein, S. Sheiko, Phys. Rev. Lett.

**99**, 137801 (2007).

ADSCrossRefGoogle Scholar20.

F. Monroy, F. Ortega, R.G. Rubio, H. Ritacco, D. Langevin, Phys. Rev. Lett.

**95**, 056103 (2005).

ADSCrossRefGoogle Scholar21.

F. Monroy, F. Ortega, R.G. Rubio, M.G. Velarde, Adv. Colloid Interface Sci.

**134-135**, 175 (2007).

CrossRefGoogle Scholar22.

A. Maestro, H.M. Hilles, F. Ortega, R.G. Rubio, D. Langevin, F. Monroy, Soft Matter

**6**, 4407 (2010).

ADSCrossRefGoogle Scholar23.

L.R. Arriaga, F. Monroy, D. Langevin, Soft Matter

**7**, 7754 (2011).

ADSCrossRefGoogle Scholar24.

K. Sugihara, J. Kumaki, J. Phys. Chem. B

**116**, 6561 (2012).

CrossRefGoogle Scholar25.

If we compute a quantity exactly, including all numerical coefficients, we use an equal sign, i.e., we write *A* = *B*. If we state only a scaling law, ignoring all numerical coefficients, but keeping all dimensional factors, we use the symbol ≈ as, *e.g.*, for the chain size in the compact limit, eq. (1). If we want to stress only the power law involved, we use the symbol ∼ as, *e.g.*, for the scaling of the chain perimeter *L* with chain length *N* indicated in eq. (2). The dilute limit of a property considered is often characterized by an index 0, *e.g.*, *ν*
_{0} = 3/4 denotes the Flory chain size exponent for dilute chains.

26.

J. Wittmer, A. Cavallo, H. Xu, J. Zabel, P. Polińska, N. Schulmann, H. Meyer, J. Farago, A. Johner, S. Obukhov, J. Baschnagel, J. Stat. Phys.

**145**, 1017 (2011).

ADSMATHCrossRefGoogle Scholar27.

L.D. Landau, E.M. Lifshitz, Theory of Elasticity (Pergamon Press, 1959).

28.

J.S. Rowlinson, Liquids and Liquid Mixtures (Butterworths Scientific Publications, London, 1959).

29.

J. Hansen, I. McDonald, Theory of Simple Liquids (Academic Press, New York, 1986).

30.

J.F. Lutsko, J. Appl. Phys.

**65**, 2991 (1989).

ADSCrossRefGoogle Scholar31.

J.P. Wittmer, A. Tanguy, J.-L. Barrat, L. Lewis, Europhys. Lett.

**57**, 423 (2002).

ADSCrossRefGoogle Scholar32.

B. Schnell, H. Meyer, C. Fond, J. Wittmer, J. Baschnagel, Eur. Phys. J. E

**34**, 97 (2011).

CrossRefGoogle Scholar33.

H. Xu, J. Wittmer, P. Polińska, J. Baschnagel, submitted.

34.

J. Baschnagel, J.P. Wittmer, H. Meyer, in Computational Soft Matter: From Synthetic Polymers to Proteins, Vol. 23, edited by N. Attig (NIC Series, Jülich, 2004) pp. 83--140.

35.

G.S. Grest, K. Kremer, Phys. Rev. A

**33**, 3628 (1986).

ADSCrossRefGoogle Scholar36.

S.J. Plimpton, J. Comput. Phys.

**117**, 1 (1995).

ADSMATHCrossRefGoogle Scholar37.

M. Allen, D. Tildesley, Computer Simulation of Liquids (Oxford University Press, Oxford, 1994).

38.

D. Frenkel, B. Smit, Understanding Molecular Simulation -- From Algorithms to Applications, 2nd edition (Academic Press, San Diego, 2002).

39.

Being truncated and shifted at the minimum of the full LJ potential our excluded-volume potential is continuous and differentiable everywhere. As shown in ref. paptrunc, this is of relevance for calculations of elastic moduli using a stress fluctuation relation, such as eq. (eq_KRowlinson), which involves derivatives of the interaction potentials.

40.

This clearly separates the bonded and non-bonded interactions which is of importance for the various thermodynamic contributions investigated in sect. sec_res. Note that some implementations of the KG model, as the recent version of the LAMMPS code, allow to view the LJ interactions between bonded monomers as intrachain contributions.

41.

The bond potential being harmonic, various conformational and thermodynamic properties can easily be calculated if the non-bonded potential is thought to be switched off or known to be irrelevant. Under this assumption the equipartition theorem [37] tells us, e.g., that the average bonding energy *e*
_{b} per bond should be *k*
_{B}
*T*/2. As a consequence the relative deviation from the reference distance *l*
_{b} = 0.967 is given by \(\left\langle {\left( {r/l_b - 1} \right)^2 } \right\rangle ^{1/2} = \sqrt {{{k_B T} \mathord{\left/
{\vphantom {{k_B T} {k_b l_b^2 }}} \right.
\kern-\nulldelimiterspace} {k_b l_b^2 }}} \approx 0.0398\). This gives an excellent approximation for the data in the dilute and semidilute regimes where 〈|*r*|〉 ≈ 0.9692 and *l* ≡ 〈*r*
^{2}〉 ≈ 0.9700 (table 1).

42.

The reported MD data have been sampled over a period of about five years using different local and national computational resources which are difficult to compare. The configurations obtained in this limit have been already used and characterized in various previous publications [12-16]. The production of the MC data for smaller densities (*ρ* ≤ 0.25) performed to crosscheck and improve the MD simulations was much less expensive corresponding to production runs over a year using 8 cores of Intel Xeon E5410 processors.

43.

A. Kopf, B. Dünweg, W. Paul, J. Chem. Phys.

**107**, 6945 (1997).

ADSCrossRefGoogle Scholar44.

For non-interacting phantom chains we have *k*
_{B}
*T* for the pressure contribution per bond as one confirms by integration by parts of \(\smallint drru'_b (r)e^{ - \beta u_b (r)}\). Summing over all bonds we thus have *P*
_{b}
*β*/*ρ* = −(*N* − 1)/*N* = −1 + 1/*N* and, hence, *P* = *P*
_{id} + *P*
_{b} = *k*
_{B}
*Tρ*/*N*.

45.

Plotting *P*
_{int}
*β*/*ρ* as a function of chain length *N* reveals the same power law exponents −*νθ* = −19/16 and 3/8 for the dilute and dense limits as seen in fig. 5 for interchain interaction energy *e*
_{int}(*N*).

46.

Since the non-bonded interactions get more important at higher densities, these numerical problems become irrelevant for *ρ* ≥ 0.25. The data points given in fig. 6 and the main panel of fig. 7 all refer to the best *δt*-independent thermodynamic relevant values available.

47.

This scaling has been directly tested by tracing *N Pβ*/*ρ* as a function of *x* = *ρ*/*ρ*
^{*} ∼ *ρN*
^{1/2>}. This plot is not presented since the related dilute-semidilute crossover scaling for the compressibility is given in the inset of fig. 8.

48.

We have additionally checked that similar values are obtained from the volume fluctuations *δV* in an isobaric ensemble with imposed pressure *P* using *K* = *k*
_{B}
*T*〈*V*〉/〈*δ*
^{2}
*V*〉 [37]. While we find again that this method is straight- forward for polymer melts (*ρ* > 0.5), *K*(*t*) is seen to converge increasingly slowly with decreasing density to the asymptotic long-time plateau —just as the compression moduli computed using the stress fluctuation formula, eq. (16), for the canonical ensemble presented in fig. 11.

49.

The presented numerical results suggest to express quite generally the difference *η*
_{B} − *η*
_{F}of the different potential contributions in terms of the “distinct stress fluctuation correlation” \(\eta _{F,dist} \equiv \frac{\beta }
{{d^2 V}}\sum\limits_{l \ne l'} {\left\langle {w(r_l )w(r_{l'} )} \right\rangle .}\) (This can be readily done by integration by parts.) Unfortunately, this expression is quadratic with respect to the total particle number and the direct computation of *η*
_{F,dist} is, hence, not a practical route either.

50.

A similar deviation of the RPA formula in the crossover regime at *q* ≈ 2*π*/*ξ* has also been seen for three-dimensional bulks [51].

51.

M. Müller, K. Binder, L. Schäfer, Macromolecules

**33**, 4568 (2000).

CrossRefGoogle Scholar52.

M. Dijkstra, D. Frenkel, Phys. Rev. B

**50**, 349 (1994).

ADSCrossRefGoogle Scholar53.

F. Birch, J. App. Phys.

**9**, 279 (1938).

ADSMATHCrossRefGoogle Scholar54.

D.C. Wallace, in Solid State Physics: Advances in Research and Applications, Vol. 25, edited by H. Ehrenreich, F. Seitz, D. Turnbull (Academic Press, New York and London, 1970) p. 300.