The European Physical Journal E

, 35:89

Active chiral fluids

  • S. Fürthauer
  • M. Strempel
  • S. W. Grill
  • F. Jülicher
Open Access
Regular Article
Part of the following topical collections:
  1. Active Matter

Abstract

Active processes in biological systems often exhibit chiral asymmetries. Examples are the chirality of cytoskeletal filaments which interact with motor proteins, the chirality of the beat of cilia and flagella as well as the helical trajectories of many biological microswimmers. Here, we derive constitutive material equations for active fluids which account for the effects of active chiral processes. We identify active contributions to the antisymmetric part of the stress as well as active angular momentum fluxes. We discuss four types of elementary chiral motors and their effects on a surrounding fluid. We show that large-scale chiral flows can result from the collective behavior of such motors even in cases where isolated motors do not create a hydrodynamic far field.

Keywords

Regular Article - Topical issue: Active Matter 

References

  1. 1.
    D. Bray, Cell Movements, 2nd edition (Garland Pub., 2000).Google Scholar
  2. 2.
    J. Howard, Mechanics of Motor Proteins and the Cytoskeleton (Palgrave Macmillan, 2001).Google Scholar
  3. 3.
    T. Mitchison, L. Cramer, Cell 84, 371 (1996).CrossRefGoogle Scholar
  4. 4.
    S.W. Grill, J. Howard, E. Schaffer, E.H. Stelzer, A. Hyman, Science 301, 518 (2003).ADSCrossRefGoogle Scholar
  5. 5.
    A. Zumdieck, M.C. Lagomarsino, C. Tanase, K. Kruse, B. Mulder, M. Dogterom, F. Jülicher, Phys. Rev. Lett. 95, 258103 (2005).ADSCrossRefGoogle Scholar
  6. 6.
    J. Pecreaux, J.-C. Röper, K. Kruse, F. Jülicher, A. Hyman, S.W. Grill, J. Howard, Curr. Biol. 16, 2111 (2006).CrossRefGoogle Scholar
  7. 7.
    G. Salbreux, J. Prost, J.-F. Joanny, Phys. Rev. Lett. 103, 058102 (2009).ADSCrossRefGoogle Scholar
  8. 8.
    I.R. Gibbons, J. Cell Biol. 91, 107 (1981).CrossRefGoogle Scholar
  9. 9.
    A. Hilfinger, F. Jülicher, Phys. Biol. 5, 016003 (2008).ADSCrossRefGoogle Scholar
  10. 10.
    E. Purcell, Am. J. Phys. 45, 3 (1977).ADSCrossRefGoogle Scholar
  11. 11.
    H.C. Berg, E. Coli in Motion (Springer-Verlag, New York, 2004).Google Scholar
  12. 12.
    R. Foty, G. Forgacs, C. Pfleger, M. Steinberg, Phys. Rev. Lett. 72, 2298 (1994).ADSCrossRefGoogle Scholar
  13. 13.
    J. Ranft, M. Basan, J. Elgeti, J.-F. Joanny, J. Prost, F. Jülicher, Proc. Natl. Acad. Sci. U.S.A. 107, 20863 (2010).ADSCrossRefGoogle Scholar
  14. 14.
    R. Aditi Simha, S. Ramaswamy, Phys. Rev. Lett. 83, 058101 (2002).ADSCrossRefGoogle Scholar
  15. 15.
    R. Voituriez, J.-F. Joanny, J. Prost, Europhys. Lett. 70, 404 (2005).ADSCrossRefGoogle Scholar
  16. 16.
    S. Fürthauer, M. Neef, S.W. Grill, K. Kruse, F. Jülicher, New J. Phys. 14, 023001 (2012).CrossRefGoogle Scholar
  17. 17.
    Y. Hatwalne, S. Ramaswamy, M. Rao, R.A. Simha, Phys. Rev. Lett. 92, 118101 (2004).ADSCrossRefGoogle Scholar
  18. 18.
    F. Jülicher, K. Kruse, J. Prost, J.-F. Joanny, Phys. Rep. 449, 3 (2007).MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    M. Mayer, M. Depken, J. Bois, F. Jülicher, S.W. Grill, Nature 467, 617 (2010).ADSCrossRefGoogle Scholar
  20. 20.
    C. Dombrowski, L. Cisneros, L. Chatkaew, R. Goldstein, J. Kessler, Phys. Rev. Lett. 93, 098103 (2004).ADSCrossRefGoogle Scholar
  21. 21.
    A. Baskarana, M.C. Marchetti, Proc. Natl. Acad. Sci. U.S.A. 106, 15569 (2009).ADSGoogle Scholar
  22. 22.
    M. Basan, J.-F. Joanny, J. Prost, T. Risler, Phys. Rev. Lett. 106, 158101 (2011).ADSCrossRefGoogle Scholar
  23. 23.
    L. Bocquet, W. Losert, D. Schalk, T.C. Lubensky, J.P. Gollub, Phys. Rev. E 65, 011307 (2001).ADSCrossRefGoogle Scholar
  24. 24.
    J.-C. Tsai, F. Ye, J. Rodriguez, J.P. Gollub, T.C. Lubensky, Phys. Rev. Lett. 94, 214301 (2005).ADSCrossRefGoogle Scholar
  25. 25.
    I.S. Aranson, L.S. Tsimring, Rev. Mod. Phys. 78, 641 (2006).ADSCrossRefGoogle Scholar
  26. 26.
    I. Sase, H. Miyata, S. Ishiwata, K. Kinosita Jr, Proc. Natl. Acad. Sci. U.S.A. 94, 5646 (1997).ADSCrossRefGoogle Scholar
  27. 27.
    M. Lenz, F. Jülicher, J.-F. Joanny, J. Prost, Phys. Rev. Lett. 91, 108104 (2003).ADSCrossRefGoogle Scholar
  28. 28.
    A. Vilfan, Biophys. J. 97, 1130 (2009).ADSCrossRefGoogle Scholar
  29. 29.
    M. Leoni, T.B. Liverpool, EPL 92, 64004 (2010).ADSCrossRefGoogle Scholar
  30. 30.
    Y. Fily, A. Baskaran, M.C. Marchetti, Soft Matter 8, 3002 (2012).ADSCrossRefGoogle Scholar
  31. 31.
    R. Di Leonardo, D. Dell’Arciprete, L. Angelani, V. Iebba, Phys. Rev. Lett. 106, 038101 (2011).ADSCrossRefGoogle Scholar
  32. 32.
    J. Buceta, M. Ibañes, D. Rasskin-Gutman, Y. Okada, N. Hirokawa, J.C. Izpisúa-Belmontey, Biophys. J. 89, 2199 (2005).CrossRefGoogle Scholar
  33. 33.
    D.J. Smith, J.R. Blake, E.A. Gaffney, J. R. Soc. Interface 5, 567 (2008).CrossRefGoogle Scholar
  34. 34.
    S. Nonaka, Y. Tanaka, Y. Okada, S. Takeda, A. Harada, Y. Kanai, M. Kido, N. Hirokawa, Cell 95, 829 (1998).CrossRefGoogle Scholar
  35. 35.
    S. Nonaka, S. Yoshiba, D. Watanabe, S. Ikeuchi, T. Goto, W.F. Marshall, H. Hamada, PLoS Biol. 3, e268 (2005).CrossRefGoogle Scholar
  36. 36.
    L.N. Vandenberg, L. Levin, Semin. Cell Develop. Biol. 20, 456 (2009).CrossRefGoogle Scholar
  37. 37.
    C.L. Henley, arXiv:0811.0055v2 (2008).
  38. 38.
    C.L. Henley, arXiv:1112.2317v1 (2011).
  39. 39.
    J.H.E. Cartwright, O. Piro, I. Tuva, Proc. Natl. Acad. Sci. U.S.A. 101, 7234 (2004).ADSCrossRefGoogle Scholar
  40. 40.
    T.B. Liverpool, M.C. Marchetti, Europhys. Lett. 69, 84 (2005).CrossRefGoogle Scholar
  41. 41.
    K. Kruse, F. Jülicher, Phys. Rev. Lett. 85, 1778 (2000).ADSCrossRefGoogle Scholar
  42. 42.
    K. Kruse, J.-F. Joanny, F. Jülicher, J. Prost, K. Sekimoto, Phys. Rev. Lett. 92, 078101 (2004).ADSCrossRefGoogle Scholar
  43. 43.
    K. Kruse, J.-F. Joanny, F. Jülicher, J. Prost, K. Sekimoto, Eur. Phys. J. E 16, 5 (2005).CrossRefGoogle Scholar
  44. 44.
    J.-F. Joanny, F. Jülicher, K. Kruse, J. Prost, New J. Phys. 9, 422 (2007).ADSCrossRefGoogle Scholar
  45. 45.
    S.R. de Groot, P. Mazur, Non-Equilibrium Thermodynamics (Dover Pub., 1984).Google Scholar
  46. 46.
    P.C. Martin, O. Parodi, P.S. Pershan, Phys. Rev. A 6, 6 (1972).Google Scholar
  47. 47.
    P.G. de Gennes, J. Prost, The Physics of Liquid Crystals (Oxford University Press, 1995).Google Scholar
  48. 48.
    H. Stark, T.C. Lubensky, Phys. Rev. E 67, 061709 (2003).MathSciNetADSCrossRefGoogle Scholar
  49. 49.
    H. Stark, T.C. Lubensky, Phys. Rev. E 72, 051714 (2005).MathSciNetADSCrossRefGoogle Scholar
  50. 50.
    K. Drescher, K.C. Leptos, I. Tuval, T. Ishikawa, T.J. Pedley, R.E. Goldstein, Phys. Rev. Lett. 102, 168101 (2009).ADSCrossRefGoogle Scholar
  51. 51.
    R.M. Berry, H.C. Berg, Biophys. J. 76, 580 (1999).ADSCrossRefGoogle Scholar
  52. 52.
    M. Danilchik, E.E. Brown, K. Riegert, Development 133, 4517 (2006).CrossRefGoogle Scholar
  53. 53.
    R. Kuroda, B. Endo, M. Abe, M. Shimizu, Nature 462, 08597 (2009).CrossRefGoogle Scholar
  54. 54.
    C. Pohl, Z. Bao, Dev. Cell 19, 402 (2010).CrossRefGoogle Scholar
  55. 55.
    Y. Wu, Basarab G. Hosu, Howard C. Berg, Proc. Natl. Acad. Sci. U.S.A. 108, 4147 (2011).ADSCrossRefGoogle Scholar
  56. 56.
    M. Strempel, S. Fürthauer, S.W. Grill, F. Jülicher, arXiv:1112.3492 (2011).

Copyright information

© The Author(s) 2012

Authors and Affiliations

  • S. Fürthauer
    • 1
    • 2
  • M. Strempel
    • 1
    • 2
  • S. W. Grill
    • 1
    • 2
  • F. Jülicher
    • 1
  1. 1.Max Planck Institute for the Physics of Complex SystemsDresdenGermany
  2. 2.Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany

Personalised recommendations