Advertisement

How flow changes polymer depletion in a slit

  • T. TaniguchiEmail author
  • Y. Arai
  • R. Tuinier
  • T. -H. Fan
Regular Article

Abstract

A theoretical model is developed for predicting dynamic polymer depletion under the influence of fluid flow. The results are established by combining the two-fluid model and the self-consistent field theory. We consider a uniform fluid flow across a slit containing a solution with polymer chains. The two parallel and infinitely long walls are permeable to solvent only and the polymers do not adsorb to these walls. For a weak flow and a narrow slit, an analytic expression is derived to describe the steady-state polymer concentration profiles in a \( \Theta\) -solvent. In both \( \Theta\) - and good-solvents, we compute the time evolution of the concentration profiles for various flow rates characterized by the Peclet number. The model reveals the interplay of depletion, solvent condition, slit width, and the relative strength of the fluid flow.

Keywords

Soft Matter: Colloids and Nanoparticles 

References

  1. 1.
    G.J. Fleer, M.A. Cohen Stuart, J.M.H.M. Scheutjens, T. Cosgrove, B. Vincent, Polymers at Interfaces (Chapman and Hall, New York, 1993)Google Scholar
  2. 2.
    E. Eisenriegler, J. Chem. Phys. 79, 1052 (1983)ADSCrossRefGoogle Scholar
  3. 3.
    A. Hanke, E. Eisenriegler, S. Dietrich, Phys. Rev. E 59, 6853 (1999)ADSCrossRefGoogle Scholar
  4. 4.
    G.J. Fleer, R. Tuinier, Adv. Colloid Interface Sci. 143, 1 (2008)CrossRefGoogle Scholar
  5. 5.
    P.G. De Gennes, Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca, 1979)Google Scholar
  6. 6.
    G.J. Fleer, A.M. Skvortsov, R. Tuinier, Macromolecules 36, 7857 (2003)ADSCrossRefGoogle Scholar
  7. 7.
    G.J. Fleer, A.M. Skvortsov, R. Tuinier, Macromol. Theory Sim. 16, 531 (2007)CrossRefGoogle Scholar
  8. 8.
    S. Asakura, F. Oosawa, J. Chem. Phys. 22, 1255 (1954)ADSGoogle Scholar
  9. 9.
    A. Vrij, Pure Appl. Chem. 48, 471 (1976)CrossRefGoogle Scholar
  10. 10.
    R. Verma, J.C. Crocker, T.C. Lubensky, A.G. Yodh, Macromolecules 33, 177 (2000)ADSCrossRefGoogle Scholar
  11. 11.
    H.N.W. Lekkerkerker, W.C.K. Poon, P.N. Pusey, A. Stroobants, P.B. Warren, Europhys. Lett. 20, 559 (1992)ADSCrossRefGoogle Scholar
  12. 12.
    S.M. Ilett, A. Orrock, W.C.K. Poon, P.N. Pusey, Phys. Rev. E 51, 1344 (1995)ADSCrossRefGoogle Scholar
  13. 13.
    E.J. Meijer, D. Frenkel, J. Chem. Phys. 100, 6873 (1994)ADSCrossRefGoogle Scholar
  14. 14.
    R. Tuinier, P.A. Smith, W.C.K. Poon, S.U. Egelhaaf, D.G.A.L. Aarts, H.N.W. Lekkerkerker, G.J. Fleer, EPL 82, 68002 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    R. Tuinier, T. Taniguchi, J. Phys: Condens. Matter L9, 17 (2005)Google Scholar
  16. 16.
    E. Duering, Y. Rabin, Macromolecules 23, 2232 (1990)ADSCrossRefGoogle Scholar
  17. 17.
    R. Tuinier, J.K.G. Dhont, T.-H. Fan, Europhys. Lett. 75, 929 (2006)ADSCrossRefGoogle Scholar
  18. 18.
    T.-H. Fan, J.K.G. Dhont, R. Tuinier, Phys. Rev. E 75, 011803 (2007)ADSCrossRefGoogle Scholar
  19. 19.
    T.-H. Fan, R. Tuinier, Soft Matter 6, 647 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    T. Odijk, Physica A 337, 389 (2004)ADSCrossRefGoogle Scholar
  21. 21.
    M. Doi, A. Onuki, J. Phys. II 2, 1631 (1992)CrossRefGoogle Scholar
  22. 22.
    D.M. Hall, T. Lookman, G.H. Fredrickson, S. Banerjee, J. Comput. Phys. 244, 681 (2007)MathSciNetADSCrossRefGoogle Scholar
  23. 23.
    H. Pasch, B. Trathnigg, HPLC of polymers (Springer, Berlin, Heidelberg, New York, 1997)Google Scholar
  24. 24.
    H. Tanaka, Phys. Rev. Lett. 71, 3158 (1996)ADSCrossRefGoogle Scholar
  25. 25.
    H. Tanaka, J. Phys. Condens. Matter. 12, R207 (2000)ADSCrossRefGoogle Scholar
  26. 26.
    M. Takenaka, H. Takeno, T. Hashimoto, M. Nagao, J. Chem. Phys. 124, 104904 (2006)ADSCrossRefGoogle Scholar
  27. 27.
    N. Toyoda, M. Takenaka, S. Saito, T. Hashimoto, Polymer 42, 9193 (2001)CrossRefGoogle Scholar
  28. 28.
    M. Takenaka, H. Takeno, H. Hasegawa, S. Saito, T. Hashimoto, M. Nagao, Phys. Rev. E 65, 021806 (2002)ADSCrossRefGoogle Scholar
  29. 29.
    T. Imaeda, A. Furukawa, A. Onuki, Phys. Rev. E 70, 051503 (2004)ADSCrossRefGoogle Scholar
  30. 30.
    T. Taniguchi, A. Onuki, Phys. Rev. Lett. 77, 4910 (1996)ADSCrossRefGoogle Scholar
  31. 31.
    E. Helfand, G.H. Fredrickson, Phys. Rev. Lett. 62, 2468 (1989)ADSCrossRefGoogle Scholar
  32. 32.
    S.T. Milner, Phys. Rev. E 48, 3674 (1993)ADSCrossRefGoogle Scholar
  33. 33.
    M. Koga, M. Takenaka, T. Hashimoto, T. Inoue, H. Watanabe, J. Chem. Phys. 126, 164911 (2008)Google Scholar
  34. 34.
    H.N.W. Lekkerkerker, R. Tuinier, Colloids and the Depletion Interaction (Springer, Heidelberg 2011)Google Scholar
  35. 35.
    A.A. Louis, P.G. Bolhuis, E.J. Meijer, J.P. Hansen, J. Chem. Phys. 116, 10547 (2002)ADSCrossRefGoogle Scholar
  36. 36.
    G.H. Fredrickson, The Equilibrium Theory of Inhomogeneous Polymers (Clarendon Press, Oxford, 2006)Google Scholar
  37. 37.
    T. Taniguchi, T. Kawakatsu, K. Kawasaki, AIP Conf. Proc. 256, 503 (1992)ADSCrossRefGoogle Scholar
  38. 38.
    E. Eisenriegler, A. Hanke, S. Dietrich, J. Chem. Phys. 54, 1134 (1996)Google Scholar
  39. 39.
    E. Eisenriegler, Polymers near Surfaces (World Scientific, Singapore, 1993)Google Scholar
  40. 40.
    E. Eisenriegler, J. Chem. Phys. 116, 449 (2002)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • T. Taniguchi
    • 1
    Email author
  • Y. Arai
    • 1
  • R. Tuinier
    • 2
    • 3
  • T. -H. Fan
    • 4
  1. 1.Graduate School of EngineeringKyoto University Katsura CampusNishikyo-ku, KyotoJapan
  2. 2.DSM ChemTech, ACESGeleenThe Netherlands
  3. 3.Van ’t Hoff Laboratory for Physical and Colloid Chemistry, Debye InstituteUtrecht UniversityUtrechtThe Netherlands
  4. 4.Department of Mechanical EngineeringUniversity of ConnecticutMassachusettsUSA

Personalised recommendations