Advertisement

Probability distributions for the run-and-tumble bacterial dynamics: An analogy to the Lorentz model

  • K. Martens
  • L. Angelani
  • R. Di Leonardo
  • L. BocquetEmail author
Regular Article
Part of the following topical collections:
  1. Active Matter

Abstract

In this paper, we exploit an analogy of the run-and-tumble process for bacterial motility with the Lorentz model of electron conduction in order to obtain analytical results for the intermediate scattering function. This allows to obtain an analytical result for the van Hove function in real space for two-dimensional systems. We furthermore consider the 2D circling motion of bacteria close to solid boundaries with tumbling, and show that the analogy to electron conduction in a magnetic field allows to predict the effective diffusion coefficient of the bacteria. The latter is shown to be reduced by the circling motion of the bacteria.

Keywords

Regular Article - Topical issue: Active Matter 

References

  1. 1.
    H.C. Berg, E. Coli In Motion (Springer, New York, 2004).Google Scholar
  2. 2.
    H.C. Berg, D.A. Brown, Nature (London) 239, 500 (1972).ADSCrossRefGoogle Scholar
  3. 3.
    H.G. Othmer, S.R. Dunbar, W. Alt, J. Math. Biol. 26, 263 (1988).MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    M.J. Schnitzer, Phys. Rev. E 48, 2553 (1993).MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    J. Tailleur, M.E. Cates, Phys. Rev. Lett. 100, 218103 (2008).ADSCrossRefGoogle Scholar
  6. 6.
    J. Tailleur, M.E. Cates, EPL 86, 60002 (2009).ADSCrossRefGoogle Scholar
  7. 7.
    R.W. Nash, R. Adhikari, J. Tailleur, M.E. Cates, Phys. Rev. Lett. 104, 258101 (2010).ADSCrossRefGoogle Scholar
  8. 8.
    M.E. Cates, Rep. Prog. Phys. 75, 042601 (2012).ADSCrossRefGoogle Scholar
  9. 9.
    J. Saragosti, V. Calvez, N. Bournaveas, B. Perthame, A. Buguina, P. Silberzan, Proc. Natl. Acad. Sci. U.S.A. 108, 16235 (2011).ADSCrossRefGoogle Scholar
  10. 10.
    L. Angelani, A. Costanzo, R. Di Leonardo, EPL 96, 68002 (2011).ADSCrossRefGoogle Scholar
  11. 11.
    L.G. Wilson, V.A. Martinez, J. Schwarz-Linek, J. Tailleur, G. Bryant, P.N. Pusey, W.C.K. Poon, Phys. Rev. Lett. 106, 018101 (2011).ADSCrossRefGoogle Scholar
  12. 12.
    Vincent A. Martinez, Rut Besseling, Ottavio A. Croze, Julien Tailleur, Mathias Reufer, Jana Schwarz-Linek, Laurence G. Wilson, Martin A. Bees, Wilson C. K. Poon, arXiv:1202.1702v1.
  13. 13.
    H.A. Lorentz, Arch. Néerl. 10, 336 (1905).Google Scholar
  14. 14.
    E. Hauge, Phys. Fluids 13, 1201 (1970).MathSciNetADSzbMATHCrossRefGoogle Scholar
  15. 15.
    A.D. Kolesnik, J. Stat. Phys. 131, 1039 (2008).MathSciNetADSzbMATHCrossRefGoogle Scholar
  16. 16.
    Pavel L. Krapivsky, Sidney Redner, Eli Ben-Naim (Editors), A Kinetic View of Statistical Physics (Cambridge University Press, 2010).Google Scholar
  17. 17.
    We use relation 6.575, in I.S Gradshteyn, I.M. Ryzhik, Table of integrals, series and products, 6th ed. (Academic Press, San Diego, 2000). The term n = 0 needs a specific treatment, see 6.512 (8).Google Scholar
  18. 18.
    W. Stadje, J. Stat. Phys. 46, 207 (1987).MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    Allison P. Berke, Linda Turner, Howard C. Berg, Eric Lauga, Phys. Rev. Lett. 106 101, 038102 (2008).Google Scholar
  20. 20.
    E. Lauga, W.R. DiLuzio, G.M. Whitesides, H.A. Stone, Biophys. J. 90, 400 (2006).ADSCrossRefGoogle Scholar
  21. 21.
    P.D. Frymier, R.M. Ford, H.C. Berg, P.T. Cummings, Proc. Natl. Acad. Sci. U.S.A. 92, 6195 (1995).ADSCrossRefGoogle Scholar
  22. 22.
    R. Di Leonardo, D. Dell’Arciprete, L. Angelani, V. Iebba, Phys. Rev. Lett. 106, 038101 (2011).ADSCrossRefGoogle Scholar
  23. 23.
    K.M. Ottemann, J.F. Miller, Mol. Microbiol. 24, 1109 (1997).CrossRefGoogle Scholar
  24. 24.
    F. Cornu, J. Piasecki, Physica A 370, 591 (2006).ADSCrossRefGoogle Scholar
  25. 25.
    A.J. Spakowitz, Z.-G. Wang, Macromolecules 37, 5814 (2004).ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • K. Martens
    • 1
  • L. Angelani
    • 2
  • R. Di Leonardo
    • 2
  • L. Bocquet
    • 1
    Email author
  1. 1.LPMCN, Université Lyon 1 and UMR CNRS 5586VilleurbanneFrance
  2. 2.CNR-IPCF UOS Roma, Dipartimento di FisicaUniversità SapienzaRomaItaly

Personalised recommendations