Active compaction of crosslinked driven filament networks

  • V. Schaller
  • B. Hammerich
  • A. R. Bausch
Regular Article
Part of the following topical collections:
  1. Active Matter

Abstract

The contractile ability of active materials relies on the interplay of force-exerting and force-bearing structures. However, the complexity of interactions and limited parameter control of many model systems are major obstacles in advancing our understanding of the underlying fundamental principles. To shed light on these principles we introduce and analyse a minimal reconstituted system, consisting of highly concentrated actin filaments that are crosslinked by α-actinin and actively transported in the two-dimensional geometry of a motility assay. This minimal system actively compacts and evolves into highly compact fibres that exceed the length of the individual filaments by two orders of magnitude. We identify the interplay between active transport and crosslinking to be responsible for the observed active compaction. This enables us to control the structure and the length scale of active compaction.

Keywords

Topical contribution 

Supplementary material

10189_2012_9758_MOESM1_ESM.zip (11 mb)
Supplementary material

References

  1. 1.
    T.E. Kreis, W. Birchmeier, Cell 22, 555 (1980)CrossRefGoogle Scholar
  2. 2.
    J.M. Sanger et al., Cell Motil. Cytoskel. 7, 209 (1987)CrossRefGoogle Scholar
  3. 3.
    A.S. Maddox et al., Develop. Cell 12, 827 (2007)CrossRefGoogle Scholar
  4. 4.
    A.B. Verkhovsky, G.G. Borisy, J. Cell Biol. 123, 637 (1993)CrossRefGoogle Scholar
  5. 5.
    N.A. Medeiros, D.T. Burnette, P. Forscher, Nature Cell Biol. 8, 215 (2006)CrossRefGoogle Scholar
  6. 6.
    P. Lenart et al., Nature 436, 812 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    K. Kruse et al., Phys. Rev. Lett. 92, 078101 (2004)ADSCrossRefGoogle Scholar
  8. 8.
    T.B. Liverpool et al., EPL 85, 18007 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    J.-F. Joanny, J. Prost, HFSP (Hum. Front. Sci. Prog.) J. 3, 94 (2009)Google Scholar
  10. 10.
    T. Guerin et al., Curr. Opin. Cell Biol. 22, 14 (2010)CrossRefGoogle Scholar
  11. 11.
    D. Mizuno et al., Science 315, 370 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    D.A. Fletcher, P.L. Geissler, Annu. Rev. Phys. Chem. 60, 469 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    L.P. Cramer, M. Siebert, T.J. Mitchison, J. Cell Biol. 136, 1287 (1997)CrossRefGoogle Scholar
  14. 14.
    M.M.M. Mori et al., Curr. Biol. 21, 606 (2011)CrossRefGoogle Scholar
  15. 15.
    P.M. Bendix et al., Biophys. J. 94, 3126 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    S. Koehler, V. Schaller, A.R. Bausch, Nat. Mater. 10, 462 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    M.S.E. Silva et al., Proc. Natl. Acad. Sci. U.S.A. 108, 9408 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    F. Backouche et al., Phys. Biol. 3, 264 (2006)ADSCrossRefGoogle Scholar
  19. 19.
    G.H. Koenderink et al., Proc. Natl. Acad. Sci. U.S.A. 106, 15192 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    T. Thoresen, M. Lenz, M.L. Gardel, Biophys. J. 100, 2698 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    K. Takiguchi, J. Biochem. 109, 520 (1991)Google Scholar
  22. 22.
    J.A. Spudich, S. Watt, J. Biol. Chem. 246, 4866 (1971)Google Scholar
  23. 23.
    S. MacLean-Fletcher, T.D. Pollard, Biochem. Biophys. Res. Commun. 96, 18 (1980)CrossRefGoogle Scholar
  24. 24.
    S.S. Margossian, S. Lowey, Meth. Enzymol. 85, 55 (1982)CrossRefGoogle Scholar
  25. 25.
    S.W. Craig, C.L. Lancashire, J.A. Cooper, Meth. Enzymol. 85, 316 (1982)CrossRefGoogle Scholar
  26. 26.
    J. Schilling, E. Sackmann, A.R. Bausch, Rev. Sci. Instrum. 75, 2822 (2004)ADSCrossRefGoogle Scholar
  27. 27.
    R.C. Arevalo, J.S. Urbach, D.L. Blair, Biophys. J. 99, L65 (2010)CrossRefGoogle Scholar
  28. 28.
    E.A. Cowen, J.K. Sveen, in PIV and Water Waves, edited by J. Grue, P.L.F. Liu, G.K. Pedersen (World Scientific Publishing, Singapore, 2003)Google Scholar
  29. 29.
    K.M. Schmoller et al., Biophys. J. 101, 803 (2011)ADSCrossRefGoogle Scholar
  30. 30.
    T. Butt et al., J. Biol. Chem. 285, 4964 (2010)CrossRefGoogle Scholar
  31. 31.
    V. Schaller et al., Nature 467, 73 (2010)ADSCrossRefGoogle Scholar
  32. 32.
    M. Edlund, M.A. Lotano, C.A. Otey, Cell Motil. Cytoskel. 48, 190 (2001)CrossRefGoogle Scholar
  33. 33.
    S. Ebashi, F. Ebashi, J. Biochem. 58, 7 (1965)Google Scholar
  34. 34.
    B. Sjoeblom, A. Salmazo, K. Djinovic-Carugo, Cell. Mol. Life Sci. 65, 2688 (2008)CrossRefGoogle Scholar
  35. 35.
    D.S. Courson, R.S. Rock, J. Biol. Chem. 285, 26350 (2010)CrossRefGoogle Scholar
  36. 36.
    O. Lieleg et al., Soft Matter 5, 1796 (2009)ADSCrossRefGoogle Scholar
  37. 37.
    K.M. Schmoller et al., Nat. Commun. 1, 134 (2010)ADSCrossRefGoogle Scholar
  38. 38.
    V. Schaller et al., Proc. Natl. Acad. Sci. U.S.A. 108, 19183 (2011)ADSCrossRefGoogle Scholar
  39. 39.
    T.P. Stossel et al., Nat. Rev. Molec. Cell Biol. 2, 138 (2001)CrossRefGoogle Scholar
  40. 40.
    Y.Y. Feng, C.A. Walsh, Nat. Cell Biol. 6, 1034 (2004)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • V. Schaller
    • 1
  • B. Hammerich
    • 1
  • A. R. Bausch
    • 1
  1. 1.Lehrstuhl für Biophysik-E27Technische Universität MünchenGarchingGermany

Personalised recommendations