Inertial microfluidics with multi-particle collision dynamics

Open Access
Regular Article

Abstract

Using the method of multi-particle collision dynamics (MPCD), we investigate inertial focussing in microfluidic channels that gives rise to the Segré-Silberberg effect. At intermediate Reynolds numbers, we model the motion of a spherical colloid in a circular microchannel under pressure-driven flow. We determine the radial distribution function and show how its width and the location of its maximum are strongly influenced by the colloid size and the Reynolds number of the Poiseuille flow. We demonstrate that MPCD is well suited for calculating mean values for the lift force acting on the colloid in the cross-sectional plane and for its mean axial velocity. We introduce a Langevin equation for the cross-sectional motion whose steady state is the Boltzmann distribution that contains the integrated lift force as potential energy. It perfectly coincides with the simulated radial distribution function.

Keywords

Soft Matter: Colloids and Nanoparticles 

References

  1. 1.
    G. Segré, A. Silberberg, Nature 189, 209 (1961)ADSCrossRefGoogle Scholar
  2. 2.
    G. Segré, A. Silberberg, J. Fluid Mech. 14, 136 (1962)ADSCrossRefGoogle Scholar
  3. 3.
    F.P. Bretherton, J. Fluid Mech. 14, 284 (1962)MathSciNetADSCrossRefMATHGoogle Scholar
  4. 4.
    J. Matas, J. Morris, E. Guazzelli, J. Fluid Mech. 515, 171 (2004)ADSCrossRefMATHGoogle Scholar
  5. 5.
    J. Matas, V. Glezer, É. Guazzelli, J. Morris, Phys. Fluids 16, 4192 (2004)ADSCrossRefGoogle Scholar
  6. 6.
    B.P. Ho, L.G. Leal, J. Fluid Mech. 65, 365 (1974)ADSCrossRefMATHGoogle Scholar
  7. 7.
    J.A. Schonberg, E.J. Hinch, J. Fluid Mech. 203, 517 (1989)MathSciNetADSCrossRefMATHGoogle Scholar
  8. 8.
    E.S. Asmolov, J. Fluid Mech. 381, 63 (1999)ADSCrossRefMATHGoogle Scholar
  9. 9.
    D. Di Carlo, D. Irimia, R.G. Tompkins, M. Toner, Proc. Natl. Acad. Sci. U.S.A. 104, 18892 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    B. Chun, A.J.C. Ladd, Phys. Fluids 18, 031704 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    B. Yang, J. Wang, D. Joseph, H. Hu, T. Pan, R. Glowinski, J. Fluid Mech. 540, 109 (2005)ADSCrossRefMATHGoogle Scholar
  12. 12.
    D. Di Carlo, Lab on a Chip 9, 3038 (2009)CrossRefGoogle Scholar
  13. 13.
    A.A.S. Bhagat, S.S. Kuntaegowdanahalli, I. Papautsky, Microfluidics Nanofluidics 7, 217 (2009)CrossRefGoogle Scholar
  14. 14.
    A.A.S. Bhagat, S.S. Kuntaegowdanahalli, I. Papautsky, Phys. Fluids 20, 101702 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    S.C. Hur, H.T.K. Tse, D. Di Carlo, Lab on a Chip 10, 274 (2010)CrossRefGoogle Scholar
  16. 16.
    S.S. Kuntaegowdanahalli, A.A.S. Bhagat, I. Papautsky, Lab on a Chip 9, 2973 (2009)CrossRefGoogle Scholar
  17. 17.
    J. Seo, M.H. Lean, A. Kole, Appl. Phys. Lett. 91, 033901 (2007)ADSCrossRefGoogle Scholar
  18. 18.
    D. Di Carlo, J.F. Edd, D. Irimia, R.G. Tompkins, M. Toner, Anal. Chem. 80, 2204 (2008)CrossRefGoogle Scholar
  19. 19.
    Z. Wu, B. Willing, J. Bjerketorp, J. Jansson, K. Hjort, Lab on a Chip 9, 1193 (2009)CrossRefGoogle Scholar
  20. 20.
    J.P. Matas, J.F. Morris, E. Guazzelli, Oil Gas Sci. Technol. Rev. 59, 59 (2004)CrossRefGoogle Scholar
  21. 21.
    P.G. Saffman, J. Fluid Mech. 22, 384 (1965)ADSCrossRefGoogle Scholar
  22. 22.
    D. Di Carlo, J.F. Edd, K.J. Humphry, H.A. Stone, M. Toner, Phys. Rev. Lett. 102, 094503 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    J. Feng, H.H. Hu, D.D. Joseph, J. Fluid Mech. 277, 271 (1994)ADSCrossRefMATHGoogle Scholar
  24. 24.
    A. Malevanets, R. Kapral, J. Chem. Phys. 110, 8605 (1999)ADSCrossRefGoogle Scholar
  25. 25.
    A. Malevanets, R. Kapral, J. Chem. Phys. 112, 7260 (2000)ADSCrossRefGoogle Scholar
  26. 26.
    D.A. Reid, H. Hildebrandt, J.T. Padding, C.K. Hemelrijk, Phys. Rev. E 79, 046313 (2009)ADSCrossRefGoogle Scholar
  27. 27.
    A. Lamura, G. Gompper, T. Ihle, D.M. Kroll, Europhys. Lett. 56, 319 (2001)ADSCrossRefGoogle Scholar
  28. 28.
    G. Batchelor, An introduction to fluid dynamics, Cambridge mathematical library (Cambridge University Press, 2000), ISBN 9780521663960Google Scholar
  29. 29.
    G. Gompper, T. Ihle, D. Kroll, R. Winkler, in Advanced Computer Simulation Approaches for Soft Matter Sciences III, edited by C. Holm, K. Kremer (Springer Berlin/Heidelberg, 2009) Vol. 221 of Advances in Polymer Science, pp. 1--87, ISBN 978-3-540-87705-9Google Scholar
  30. 30.
    H. Noguchi, N. Kikuchi, G. Gompper, EPL 78, 10005 (2007)ADSCrossRefGoogle Scholar
  31. 31.
    T. Ihle, D.M. Kroll, Phys. Rev. E 63, 020201 (2001)ADSCrossRefGoogle Scholar
  32. 32.
    H. Noguchi, G. Gompper, Phys. Rev. E 78, 016706 (2008)ADSCrossRefGoogle Scholar
  33. 33.
    J.T. Padding, A. Wysocki, H. Löwen, A.A. Louis, J. Phys.: Condens. Matter 17, S3393 (2005)ADSCrossRefGoogle Scholar
  34. 34.
    I.O. Götze, H. Noguchi, G. Gompper, Phys. Rev. E 76, 046705 (2007)ADSCrossRefGoogle Scholar
  35. 35.
    I.O. Götze, G. Gompper, Phys. Rev. E 82, 041921 (2010)ADSCrossRefGoogle Scholar
  36. 36.
    J.T. Padding, A.A. Louis, Phys. Rev. E 74, 031402 (2006)ADSCrossRefGoogle Scholar
  37. 37.
    B.W. Silverman, Density Estimation (Chapman and Hall, 1986)Google Scholar
  38. 38.
    M.C. Jones, Biometrika 78, 511 (1991)MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    S.J. Sheather, M.C. Jones, J. Roy. Stat. Soc., Ser. B (Methodological) 53, 683 (1991)MathSciNetMATHGoogle Scholar
  40. 40.
    B. Van der Waerden, Mathematische Statistik (Springer, 1957)Google Scholar
  41. 41.
    C.A. Silebi, J.G. Dosramos, AIChE J. 35, 1351 (1989)CrossRefGoogle Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  1. 1.Institute of Theoretical PhysicsTechnische Universität BerlinBerlinGermany

Personalised recommendations