Microrheological consequences of attractive colloid-colloid potentials in a two-dimensional Brownian fluid

Regular Article

Abstract

By using microrheological methods commonly employed in videomicroscopy experiments, we study the rheology of a two-dimensional computational fluid formed by Brownian disks with the aim of exploring the influence of some effective colloid-colloid attractive interactions. The model of fluid is developed by Brownian dynamics simulations without hydrodynamical interactions, and it is characterized by calculating its equation of state from the pair distribution function. Micromechanical properties, relative and intrinsic viscosity and freezing are discussed. Then, we include attractive forces such a Asakura-Oosawa depletion force or an empiric expression proposed by Grier and Hal (GH) for an anomalous electrostatic potential observed in confined and charged colloids. By using both potentials, viscosity is clearly increased, but when the GH potential is included, viscoelastic gel state is reached for intermediate values of surface concentration. Finally, we analyse the influence of the attractive potentials in the breaking-up by thermal fluctuations of linear chains formed by 2D particles, finding that the GH potential reduces the characteristical time at which the disks can be considered as disaggregated. In this work, we employ an experimental-like methodology for the study of a Brownian hard-disk fluid, providing a very useful link with experimental procedures.

Keywords

Soft Matter: Colloids and Nanoparticles 

References

  1. 1.
    W.B. Russel, D.A. Saville, W.R. Schowalter, Colloidal Dispersions (Cambridge University Press, 1989).Google Scholar
  2. 2.
    J. Mewis, N.J. Wagner, Colloidal Suspension Rheology (Cambridge University Press, 2012).Google Scholar
  3. 3.
    D. Boal, Mechanics of the Cell (Cambridge University Press, 2002).Google Scholar
  4. 4.
    A.D. Dinsmore, M.F. Hsu, M.G. Nikolaides, M. Marquez, A.R. Bausch, D.A. Weitz, Science, 1006 (2002).Google Scholar
  5. 5.
    A.H. Marcus, B. Lin, S.A. Rice, Phys. Rev. E 53, 1765 (1996).ADSCrossRefGoogle Scholar
  6. 6.
    C. Bechinger, Curr. Opin. Colloid Interface Sci. 7, 204 (2002).CrossRefGoogle Scholar
  7. 7.
    P. Cicuta, E.J. Stancik, G.G. Fuller, Phys. Rev. Lett. 90, 236101 (2003).ADSCrossRefGoogle Scholar
  8. 8.
    S. Reynaert, P. Moldenaers, J. Vermant, Phys. Chem. Chem. Phys. 9, 6463 (2007).CrossRefGoogle Scholar
  9. 9.
    L.J. Bonales, J.E.F. Rubio, H. Ritacco, C. Vega, R.G. Rubio, F. Ortega, Langmuir 27, 3391 (2011).CrossRefGoogle Scholar
  10. 10.
    A. Mulero, C.A. Galán, M.I. Parra, F. Cuadros, Lect. Notes Phys. 753, 37 (2008).ADSCrossRefGoogle Scholar
  11. 11.
    A.C. Mirus, H. Weber, D. Marx, Phys. Rev. E 55, 6855 (1997).ADSCrossRefGoogle Scholar
  12. 12.
    A. Einstein, Ann. Phys. (Leipzig) 17, 549 (1905).ADSCrossRefMATHGoogle Scholar
  13. 13.
    T. Franosch, M. Grimm, M. Belushkin, F.M. Mor, G. Foffi, L. Forro, S. Jeney, Nature 478, 85 (2011).ADSCrossRefGoogle Scholar
  14. 14.
    M.A. Bevan, S.L. Eichmann, Curr. Opin. Colloid Interface Sci. 16, 149 (2011).CrossRefGoogle Scholar
  15. 15.
    J.C. Crocker, D.G. Grier, J. Colloid Interface Sci. 179, 298 (1996).CrossRefGoogle Scholar
  16. 16.
    F. Ortega, H. Ritacco, R.G. Rubio, Curr. Opin. Colloid Interface Sci. 15, 237 (2010).CrossRefGoogle Scholar
  17. 17.
    T.G. Mason, D.A. Weitz, Phys. Rev. Lett. 74, 1250 (1995).ADSCrossRefGoogle Scholar
  18. 18.
    T.G. Mason, J. Ganesan, H. van Zanten, D. Wirtz, S.C. Kuo, Phys. Rev. Lett. 79, 3282 (1997).ADSCrossRefGoogle Scholar
  19. 19.
    T.G. Mason, Rheol. Acta 39, 371 (2000).CrossRefGoogle Scholar
  20. 20.
    J.C. Crocker, B.D. Hoffman, Meth. Cell Biol. 83, 141 (2007).CrossRefGoogle Scholar
  21. 21.
    C.J. Chin, S. Yiacoumi, C. Tsouris, Colloids Surf., A 204, 63 (2002).CrossRefGoogle Scholar
  22. 22.
    P. Domínguez-García, S. Melle, M. A. Rubio, J. Colloid Interface Sci. 333, 221 (2009).CrossRefGoogle Scholar
  23. 23.
    J. Rabinow, AIEE Trans. 67, 1308 (1948).Google Scholar
  24. 24.
    D.G. Grier, Y. Han, J. Phys.: Condens. Matter 16, 4145 (2004).ADSCrossRefGoogle Scholar
  25. 25.
    A.E. Larsen, D.G. Grier, Nature 385, 230 (1997).ADSCrossRefGoogle Scholar
  26. 26.
    S. Asakura, F. Oosawa, J. Polym. Sci. 33, 183 (1958).ADSCrossRefGoogle Scholar
  27. 27.
    A. Vrij, Pure Appl. Chem. 48, 471 (1976).CrossRefGoogle Scholar
  28. 28.
    H. Hess, R. Klein, Appl. Phys. 32, 173 (1983).MathSciNetGoogle Scholar
  29. 29.
    D.M. Heyes, J.R. Melrose, J. Non-Newtonian Fluid Mech. 46, 1 (1993).CrossRefGoogle Scholar
  30. 30.
    R.G. Larson, The Structure and Rheology of Complex Fluids (Oxford University Press, New York, 1999).Google Scholar
  31. 31.
    B. Lin, D. Valley, M. Meron, B. Cui, H.M. Ho, S.A. Rice, J. Phys. Chem. B 113, 12742 (2009).Google Scholar
  32. 32.
    D.M. Heyes, Phys. Lett. A 132, 399 (1988).ADSCrossRefGoogle Scholar
  33. 33.
    J. Dzubiella, H. Löwen, C.N. Likos, Phys. Rev. Lett. 91, 248301 (2003).ADSCrossRefGoogle Scholar
  34. 34.
    D.R. Fross, J.F. Brady, J. Rheol. 44, 620 (2000).ADSGoogle Scholar
  35. 35.
    I.C. Carpen, J.F. Brady, J. Rheol. 49, 1483 (2005).ADSCrossRefGoogle Scholar
  36. 36.
    K.S. Schmitz, L.B. Bhuiyan, A.K. Mukherjee, Langmuir 19, 7160 (2003).CrossRefGoogle Scholar
  37. 37.
    T. Savin, P.T. Spicer, P.S. Doyle, Phys. Rev. E 76, 021501 (2007).ADSCrossRefGoogle Scholar
  38. 38.
    B.V.R. Tata, P.S. Mohanty, M.C. Valsakumar, Solid State Commun. 147, 360 (2008).ADSCrossRefGoogle Scholar
  39. 39.
    Y. Han, D.G. Grier, Phys. Rev. Lett. 91, 038302 (2003).ADSCrossRefGoogle Scholar
  40. 40.
    A.A. Louis, P.G. Bolhuis, E.J. Meijer, J.P. Hansen, J. Chem. Phys. 117, 1893 (2002).ADSCrossRefGoogle Scholar
  41. 41.
    F. Esquembre, Comput. Phys. Commun. 156, 199 (2004).ADSCrossRefGoogle Scholar
  42. 42.
    L. de la Torre, J. Sanchez, S. Dormido, J.P. Sanchez, M. Yuste, C. Carreras, Eur. J. Phys. 32, 571 (2011).CrossRefGoogle Scholar
  43. 43.
    T.D. Squires, T.D. Mason, Annu. Rev. Fluid Mech. 42, 413 (2010).ADSCrossRefGoogle Scholar
  44. 44.
    J.C. Crocker, M.T. Valentine, E.R. Weeks, T. Gisler, P.D. Kaplan, A.G. Yodh, D.A. Weitz, Phys. Rev. Lett. 85, 888 (2000).ADSCrossRefGoogle Scholar
  45. 45.
    S.H. Behrens, D.G. Grier, Phys. Rev. E 64, 050401(R) (2001).ADSCrossRefGoogle Scholar
  46. 46.
    D.A.R.P.A. Dullens, W.K. Kegel, Proc. Natl. Acad. Sci. U.S.A. 103, 529 (2006).ADSCrossRefGoogle Scholar
  47. 47.
    H. Löwen, Phys. Rev. E 53, R29 (1996).ADSCrossRefGoogle Scholar
  48. 48.
    D.C. Chae, F.H. Ree, T. Ree, J. Chem. Phys. 50, 1581 (1969).CrossRefADSGoogle Scholar
  49. 49.
    J.J. Erpenbeck, M. Luban, Phys. Rev. A 32, 2920 (1985).ADSCrossRefGoogle Scholar
  50. 50.
    J. Kolafa, M. Rottner, Mol. Phys. 104, 3455 (2006).ADSGoogle Scholar
  51. 51.
    D.M. Heyes, H. Sigurgeirsson, J. Rheol. 48, 223 (2004).ADSCrossRefGoogle Scholar
  52. 52.
    J. Ding, H.E. Warriner, J.A. Zasadzinski, Phys. Rev. Lett. 88, 168102 (2002).ADSCrossRefGoogle Scholar
  53. 53.
    J.W. Bullard, A.T. Pauli, E.J. Garboczi, N.S. Martys, J. Colloid Interface Sci. 330, 186 (2009).CrossRefGoogle Scholar
  54. 54.
    A.J.C. Ladd, J. Chem. Phys. 93, 3484 (1990).ADSCrossRefGoogle Scholar
  55. 55.
    R. Verma, J.C. Crocker, T.C. Lubensky, A.G. Yodh, Macromolecules 33, 177 (2000).ADSCrossRefGoogle Scholar
  56. 56.
    M. Triantafillou, R.D. Kamien, Phys. Rev. E 59, 5621 (1999).ADSCrossRefGoogle Scholar
  57. 57.
    E. Lemaire, Y. Grasselli, G. Bossis, J. Phys. II 2, 359 (1992).CrossRefGoogle Scholar
  58. 58.
    M. Parthasarathy, D.J. Klingenberg, Mater. Sci. Eng. R 17, 57 (1996).CrossRefGoogle Scholar
  59. 59.
    P. Domínguez-García, S. Melle, J.M. Pastor, M.A. Rubio, Phys. Rev. E 76, 051403 (2007).ADSCrossRefGoogle Scholar
  60. 60.
    S. Melle, M.A. Rubio, G.G. Fuller, Phys. Rev. Lett. 87, 115501 (2001).ADSCrossRefGoogle Scholar
  61. 61.
    A. Ashkin, Science 210, 1081 (1980).ADSCrossRefGoogle Scholar
  62. 62.
    P. Domínguez-García, J.M. Pastor, M.A. Rubio, Eur. Phys. J. E 34, 36 (2011).CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Dep. Física de MaterialesUniversidad Nacional de Educación a Distancia (UNED)MadridSpain

Personalised recommendations