Advertisement

Generic flow profiles induced by a beating cilium

  • A. VilfanEmail author
Regular Article
Part of the following topical collections:
  1. Active Matter

Abstract

We describe a multipole expansion for the low-Reynolds-number fluid flows generated by a localized source embedded in a plane with a no-slip boundary condition. It contains 3 independent terms that fall quadratically with the distance and 6 terms that fall with the third power. Within this framework we discuss the flows induced by a beating cilium described in different ways: a small particle circling on an elliptical trajectory, a thin rod and a general ciliary beating pattern. We identify the flow modes present based on the symmetry properties of the ciliary beat.

Keywords

Living systems: Biological Matter 

References

  1. 1.
    J. Gray, Ciliary Movement (Cambridge University Press, Cambridge, UK, 1928).Google Scholar
  2. 2.
    C. Brennen, H. Winet, Ann. Rev. Fluid Mech. 9, 339 (1977).ADSCrossRefGoogle Scholar
  3. 3.
    M.A. Sleigh (Editor), Cilia and Flagella (Academic Press, London, 1974).Google Scholar
  4. 4.
    B.A. Afzelius, Int. J. Dev. Biol. 43, 283 (1999).Google Scholar
  5. 5.
    N. Hirokawa, Y. Tanaka, Y. Okada et al., Cell 125, 33 (2006).CrossRefGoogle Scholar
  6. 6.
    W. Supatto, S.E. Fraser, J. Vermot, Biophys. J. 95, L29 (2008).CrossRefGoogle Scholar
  7. 7.
    J.R. Colantonio, J. Vermot, D. Wu et al., Nature 457, 205 (2009).ADSCrossRefGoogle Scholar
  8. 8.
    M. Vilfan, A. Potočnik, B. Kavčič et al., Proc. Natl. Acad. Sci. U.S.A. 107, 1844 (2010).ADSCrossRefGoogle Scholar
  9. 9.
    G. Kokot, M. Vilfan, N. Osterman et al., Biomicrofluidics 5, 034103 (2011).CrossRefGoogle Scholar
  10. 10.
    E.M. Gauger, M.T. Downton, H. Stark, Eur. Phys. J. E 28, 231 (2009).CrossRefGoogle Scholar
  11. 11.
    J. den Toonder, F. Bos, D. Broer et al., Lab Chip 8, 533 (2008).CrossRefGoogle Scholar
  12. 12.
    N. Coq, A. Bricard, F.-D. Delapierre et al., Phys. Rev. Lett. 107, 014501 (2011).ADSCrossRefGoogle Scholar
  13. 13.
    J. Hussong, N. Schorr, J. Belardi et al., Lab Chip 11, 2017 (2011).CrossRefGoogle Scholar
  14. 14.
    A.R. Shields, B.L. Fiser, B.A. Evans et al., Proc. Natl. Acad. Sci. U.S.A. 107, 15670 (2010).ADSCrossRefGoogle Scholar
  15. 15.
    N. Osterman, A. Vilfan, Proc. Natl. Acad. Sci. U.S.A. 108, 15727 (2011).ADSCrossRefGoogle Scholar
  16. 16.
    A. Vilfan, F. Jülicher, Phys. Rev. Lett. 96, 058102 (2006).ADSCrossRefGoogle Scholar
  17. 17.
    H. Lamb, Hydrodynamics, Chap. 11, 6th edition (Dover, New York, 1932) pp. 595--596.Google Scholar
  18. 18.
    J. Happel, H. Brenner, Low Reynolds Number Hydrodynamics (Kluwer, Dodrecht, 1983).Google Scholar
  19. 19.
    C. Pozrikidis, Boundary Integral and Singularity Methods for Linearized Viscous Flow (Cambridge University Press, Cambridge, UK, 1992).Google Scholar
  20. 20.
    J. Blake, A. Chwang, J. Eng. Math. 8, 23 (1974).CrossRefzbMATHGoogle Scholar
  21. 21.
    P. Marmottant, J.P. Raven, H. Gardeniers et al., J. Fluid Mech. 568, 109 (2006).ADSCrossRefzbMATHGoogle Scholar
  22. 22.
    D.J. Smith, J.R. Blake, E.A. Gaffney, J. R. Soc. Interface 5, 567 (2008).CrossRefGoogle Scholar
  23. 23.
    F. Jülicher, J. Prost, Eur. Phys. J. E 29, 27 (2009).CrossRefGoogle Scholar
  24. 24.
    N. Uchida, R. Golestanian, EPL 89, 50011 (2010).ADSCrossRefGoogle Scholar
  25. 25.
    R. Golestanian, J.M. Yeomans, N. Uchida, Soft Matter 7, 3074 (2011).ADSCrossRefGoogle Scholar
  26. 26.
    N. Uchida, R. Golestanian, Phys. Rev. Lett. 106, 058104 (2011).ADSCrossRefGoogle Scholar
  27. 27.
    J. Kotar, M. Leoni, B. Bassetti et al., Proc. Natl. Acad. Sci. U.S.A. 107, 7669 (2010).ADSCrossRefGoogle Scholar
  28. 28.
    J.R. Blake, Proc. Camb. Phil. Soc. 70, 303 (1971).ADSCrossRefzbMATHGoogle Scholar
  29. 29.
    E.M. Purcell, Am. J. Phys. 45, 3 (1977).ADSCrossRefGoogle Scholar
  30. 30.
    C. Wollin, H. Stark, Eur. Phys. J. E 34, 1 (2011).CrossRefGoogle Scholar
  31. 31.
    E. Lauga, Soft Matter 7, 3060 (2011).ADSCrossRefGoogle Scholar
  32. 32.
    S.N. Khaderi, J.M.J. den Toonder, P.R. Onck, Biomicrofluidics 6, 014106 (2012).CrossRefGoogle Scholar
  33. 33.
    M.T. Downton, H. Stark, EPL 85, 44002 (2009).ADSCrossRefGoogle Scholar
  34. 34.
    S. Gueron, K. Levit-Gurevich, N. Liron et al., Proc. Natl. Acad. Sci. U.S.A. 94, 6001 (1997).ADSCrossRefzbMATHGoogle Scholar
  35. 35.
    B. Guirao, J.F. Joanny, Biophys. J. 92, 1900 (2007).ADSCrossRefGoogle Scholar
  36. 36.
    P. Lenz, A. Ryskin, Phys. Biol. 3, 285 (2006).ADSCrossRefGoogle Scholar
  37. 37.
    E. Lauga, T.R. Powers, Rep. Prog. Phys. 72, 096601 (2009).MathSciNetADSCrossRefGoogle Scholar
  38. 38.
    R. Johnson, C. Brokaw, Biophys. J. 25, 113 (1979).CrossRefGoogle Scholar
  39. 39.
    J. Ainley, S. Durkin, R. Embid et al., J. Comp. Phys. 227, 4600 (2008).MathSciNetADSCrossRefzbMATHGoogle Scholar
  40. 40.
    D.J. Smith, Proc. R. Soc. London, Ser. A 465, 3605 (2009).ADSCrossRefzbMATHGoogle Scholar
  41. 41.
    S. Gueron, N. Liron, Biophys. J. 63, 1045 (1992).ADSCrossRefGoogle Scholar
  42. 42.
    M. Vilfan, G. Kokot, A. Vilfan et al., Beilstein J. Nanotechnol. 3, 163 (2012).CrossRefGoogle Scholar
  43. 43.
    J. Blake, J. Theor. Biol. 45, 183 (1974).ADSCrossRefGoogle Scholar
  44. 44.
    J.B. Freund, J.G. Goetz, K.L. Hill et al., Development 139, 1229 (2012).CrossRefGoogle Scholar
  45. 45.
    D. Wu, J.B. Freund, S.E. Fraser et al., Dev. Cell 20, 271 (2011).CrossRefGoogle Scholar
  46. 46.
    C.E. Sing, L. Schmid, M.F. Schneider et al., Proc. Natl. Acad. Sci. U.S.A. 107, 535 (2010).ADSCrossRefGoogle Scholar
  47. 47.
    N. Darnton, L. Turner, K. Breuer et al., Biophys. J. 86, 1863 (2004).ADSCrossRefGoogle Scholar
  48. 48.
    G. Miño, T.E. Mallouk, T. Darnige et al., Phys. Rev. Lett. 106, 048102 (2011).ADSCrossRefGoogle Scholar
  49. 49.
    C. Maul, S. Kim, J. Eng. Math. 30, 119 (1996).MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    K. Drescher, R.E. Goldstein, N. Michel et al., Phys. Rev. Lett. 105, 168101 (2010).ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.J. Stefan InstituteLjubljanaSlovenia
  2. 2.Faculty of Mathematics and PhysicsUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations