Steering trajectories in magnetically actuated colloidal propellers

  • P. TiernoEmail author
  • F. Sagués
Regular Article
Part of the following topical collections:
  1. Active Matter


Microscale colloidal doublets composed of DNA-linked paramagnetic particles and floating close to a surface are able to propel in viscous fluids when subjected to external precessing magnetic fields. We show here that for certain values of the precession angle, the composite particles can be steered into tilted rather than linear trajectories characterized by a non-vanishing lateral velocity during motion. We extend the original model developed in Phys. Rev. Lett. 101, 218304 (2008) in order to explain this phenomenon, by including high-order corrections in the expansion of the director field and demonstrate the validity of this approach by comparing the analytical results with the experimental data.


Topical contribution 

Supplementary material

10189_2012_9748_MOESM1_ESM.doc (27 kb)
Supplementary material, approximately 27.0 KB.

Supplementary material, approximately 5.02 MB.

Supplementary material, approximately 2.79 MB.

Supplementary material, approximately 2.26 MB.


  1. 1.
    H.C. Berg, L. Turner, Biophys. J. 58, 919 (1990).ADSCrossRefGoogle Scholar
  2. 2.
    W.R. DiLuzio, L. Turner, M. Mayer, P. Garstecki, D.B. Weibel, H.C. Berg, G.M. Whitesides, Nature 435, 1271 (2005).ADSCrossRefGoogle Scholar
  3. 3.
    E. Lauga, W.R. DiLuzio, G.M. Whitesides, H.A. Stone, Biophys. J. 90, 400 (2006).ADSCrossRefGoogle Scholar
  4. 4.
    R. Di Leonardo, D. Dell’Arciprete, L. Angelani, V. Iebba, Phys. Rev. Lett. 106, 038101 (2011).ADSCrossRefGoogle Scholar
  5. 5.
    I.H. Riedel, K. Kruse, J. Howard, Science 309, 300 (2005).ADSCrossRefGoogle Scholar
  6. 6.
    P. Galajda, J. Keymer, P. Chaikin, R. Austin, J. Bacteriol. 189, 8704 (2007).CrossRefGoogle Scholar
  7. 7.
    M.B. Wan, C.J.O. Reichhardt, Z. Nussinov, C. Reichhardt, Phys. Rev. Lett. 101, 018102 (2008).ADSCrossRefGoogle Scholar
  8. 8.
    A.P. Berke, L. Turner, H.C. Berg, E. Lauga, Phys. Rev. Lett. 101, 038102 (2008).ADSCrossRefGoogle Scholar
  9. 9.
    W.F. Paxton, K.C. Kistler, C.C. Olmeda, A. Sen, S.K.St. Angelo, Y. Cao, T.E. Mallouk, P.E. Lammert, V.H. Crespi, J. Am. Chem. Soc. 126, 13424 (2004).CrossRefGoogle Scholar
  10. 10.
    S. Fournier-Bidoz, A.C. Arsenault, I. Manners, G.A. Ozin, Chem. Commun., 441 (2005).Google Scholar
  11. 11.
    N. Mano, A. Heller, J. Am. Chem. Soc. 127, 11574 (2005).CrossRefGoogle Scholar
  12. 12.
    J. Vicario, R. Eelkema, W.R. Browne, A. Meetsma, R.M. La Crois, B.L. Feringa, Chem. Commun., 3936 (2005).Google Scholar
  13. 13.
    J. R. Howse, R.A.L. Jones, A.J. Ryan, T. Gough, R. Vafabakhsh, R. Golestanian, Phys. Rev. Lett. 99, 048102 (2007).ADSCrossRefGoogle Scholar
  14. 14.
    D. Pantarotto, W.R. Browne, B.L. Feringa, Chem. Commun., 1533 (2008).Google Scholar
  15. 15.
    J. Palacci, C. Cottin-Bizonne, C. Ybert, L. Bocquet, Phys. Rev. Lett. 105, 088304 (2010).ADSCrossRefGoogle Scholar
  16. 16.
    H. Ke, S. Ye, R.L. Carroll, K. Showalter, J. Phys. Chem. A 114, 5462 (2010).CrossRefGoogle Scholar
  17. 17.
    L.O. Mair, B. Evans, A.R. Hall, J. Carpenter, A. Shields, K. Ford, M. Millard, R. Superfine, J. Phys. D: Appl. Phys. 44, 125001 (2011).ADSCrossRefGoogle Scholar
  18. 18.
    R. Dreyfus, J. Baudry, M.L. Roper, M. Fermigier, H.A. Stone, J. Bibette, Nature 437, 862 (2005).ADSCrossRefGoogle Scholar
  19. 19.
    P. Garstecki, P. Tierno, D.B. Weibel, F. Sagués, G.M. Whitesides, J. Phys.: Condens. Matter. 21, 204110 (2009).ADSCrossRefGoogle Scholar
  20. 20.
    A. Snezhko, M. Belkin, I.S. Aranson, W.-K. Kwok, Phys. Rev. Lett. 102, 118103 (2009).ADSCrossRefGoogle Scholar
  21. 21.
    P. Fischer, A. Ghosh Nanoscale 3, 557 (2011).ADSCrossRefGoogle Scholar
  22. 22.
    W. Gao, D. Kagan, O.S. Pak, C. Clawson, S. Campuzano, E. Chuluun-Erdene, E. Shipton, E.E. Fullerton, L. Zhang, E. Lauga, J. Wang, Small 8, 460 (2012).CrossRefGoogle Scholar
  23. 23.
    S. Tottori, L. Zhang, F. Qiu, K.K. Krawczyk, A. Franco-Obregon, B.J. Nelson, Adv. Mater. 24, 811 (2012).CrossRefGoogle Scholar
  24. 24.
    L. Zhang, T. Petit, Y. Lu, B.E. Kratochvil, K.E. Peyer, R. Pei, J. Lou, B.J. Nelson, ACS Nano 4, 6228 (2010).CrossRefGoogle Scholar
  25. 25.
    C.E. Sing, L. Schmid, M.F. Schneider, T. Frank, A. Alexander-Katz, Proc. Natl. Acad. Sci. USA 107, 535 (2010).ADSCrossRefGoogle Scholar
  26. 26.
    J. Burdick, R. Laocharoensuk, P.M. Wheat, J.D. Posner, J. Wang, J. Am. Chem. Soc. 130, 8164 (2008).CrossRefGoogle Scholar
  27. 27.
    S. Sanchez, A.A. Solovev, S.M. Harazim, O.G. Schmidt, J. Am. Chem. Soc. 113, 701 (2011).CrossRefGoogle Scholar
  28. 28.
    P. Tierno, R. Golestanian, I. Pagonabarraga, F. Sagués, Phys. Rev. Lett. 101, 218304 (2008).ADSCrossRefGoogle Scholar
  29. 29.
    P. Tierno, R. Golestanian, I. Pagonabarraga, F. Sagués, J. Phys. Chem. B 112, 16528 (2008).Google Scholar
  30. 30.
    P. Tierno, S. Schreiber, W. Zimmermann, T.M. Fischer, J. Am. Chem. Soc. 131, 5366 (2009).CrossRefGoogle Scholar
  31. 31.
    H. Morimoto, T. Ukai, Y. Nagaoka, N. Grobert, T. Maekawa, Phys. Rev. E 78, 021403 (2008).ADSCrossRefGoogle Scholar
  32. 32.
    J. Happel, H. Brenner, Low Reynolds Number Hydrodynamics (Prentice-Hall, Englewood Cliffs, New Jersey, 1965).Google Scholar
  33. 33.
    H. Zhang, M. Widom, Phys. Rev. E 51, 2099 (1995).ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Departament d’Estructura i Constituents de la MatèriaUniversitat de BarcelonaBarcelonaSpain
  2. 2.Departament de Química FísicaUniversitat de BarcelonaBarcelonaSpain
  3. 3.Institut de Nanociència i Nanotecnologia IN2UBUniversitat de BarcelonaBarcelonaSpain

Personalised recommendations