Active and driven hydrodynamic crystals

  • N. DesreumauxEmail author
  • N. Florent
  • E. Lauga
  • D. Bartolo
Regular Article
Part of the following topical collections:
  1. Active Matter


Motivated by the experimental ability to produce monodisperse particles in microfluidic devices, we study theoretically the hydrodynamic stability of driven and active crystals. We first recall the theoretical tools allowing to quantify the dynamics of elongated particles in a confined fluid. In this regime hydrodynamic interactions between particles arise from a superposition of potential dipolar singularities. We exploit this feature to derive the equations of motion for the particle positions and orientations. After showing that all five planar Bravais lattices are stationary solutions of the equations of motion, we consider separately the case where the particles are passively driven by an external force, and the situation where they are self-propelling. We first demonstrate that phonon modes propagate in driven crystals, which are always marginally stable. The spatial structures of the eigenmodes depend solely on the symmetries of the lattices, and on the orientation of the driving force. For active crystals, the stability of the particle positions and orientations depends not only on the symmetry of the crystals but also on the perturbation wavelengths and on the crystal density. Unlike unconfined fluids, the stability of active crystals is independent of the nature of the propulsion mechanism at the single-particle level. The square and rectangular lattices are found to be linearly unstable at short wavelengths provided the volume fraction of the crystals is high enough. Differently, hexagonal, oblique, and face-centered crystals are always unstable. Our work provides a theoretical basis for future experimental work on flowing microfluidic crystals.


Flowing Matter: Liquids and Complex Fluids 


  1. 1.
    S. Ramaswamy, Adv. Phys. 50, 297 (2001).ADSCrossRefGoogle Scholar
  2. 2.
    E. Guazzelli, J. Hinch, Annu. Rev. Fluid Mech. 43, 97 (2011).MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    X.L. Wu, A. Libchaber, Phys. Rev. Lett. 84, 3017 (2000).ADSCrossRefGoogle Scholar
  4. 4.
    C. Dombrowski, L. Cisneros, S. Chatkaew, R.E. Goldstein, J.O. Kessler, Phys. Rev. Lett. 93, 098103 (2004).ADSCrossRefGoogle Scholar
  5. 5.
    L. Cisneros, R. Cortez, C. Dombrowski, R. Goldstein, J. Kessler, Exp. Fluids 43, 737 (2007).CrossRefGoogle Scholar
  6. 6.
    A. Baskaran, M. Marchetti, Proc. Natl. Acad. Sci. U.S.A. 106, 15567 (2009).ADSCrossRefGoogle Scholar
  7. 7.
    S. Ramaswamy, Annu. Rev. Condens. Matter 1, 323 (2010).ADSCrossRefGoogle Scholar
  8. 8.
    G. Subramanian, D.L. Koch, Ann. Rev. Fluid Mech. 43, 637 (2011).MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    D. Saintillan, M.J. Shelley, Phys. Rev. Lett. 99, 058102 (2007).ADSCrossRefGoogle Scholar
  10. 10.
    D. Saintillan, M. Shelley, Phys. Fluids 20, 123304 (2008).ADSCrossRefGoogle Scholar
  11. 11.
    D. Dendukuri, P.S. Doyle, Adv. Mater 21, 4071 (2009).CrossRefGoogle Scholar
  12. 12.
    M. Baron, J. Blawzdziewicz, E. Wajnryb, Phys. Rev. Lett. 100, 174502 (2008).ADSCrossRefGoogle Scholar
  13. 13.
    J. Blawzdziewicz, R.H. Goodman, N. Khurana, E. Wajnryb, Y.N. Young, Physica D 239, 1214 (2010).MathSciNetADSCrossRefzbMATHGoogle Scholar
  14. 14.
    T. Beatus, T. Tlusty, R. Bar-Ziv, Nat. Phys. 2, 743 (2006).CrossRefGoogle Scholar
  15. 15.
    M. Hashimoto, B. Mayers, P. Garstecki, G. Whitesides, Small 2, 1292 (2006).CrossRefGoogle Scholar
  16. 16.
    J. Howse, R. Jones, A. Ryan, T. Gough, R. Vafabakhsh, R. Golestanian, Phys. Rev. Lett. 99, 048102 (2007).ADSCrossRefGoogle Scholar
  17. 17.
    W.F. Paxton, K.C. Kistler, C.C. Olmeda, A. Sen, S.K.S. Angelo, Y. Cao, T.E. Mallouk, P.E. Lammert, V.H. Crespi, J. Am. Chem. Soc. 126, 13424 (2004).CrossRefGoogle Scholar
  18. 18.
    S. Thutupalli, R. Seemann, S. Herminghaus, New J. Phys. 13, 073021 (2011).ADSCrossRefGoogle Scholar
  19. 19.
    D. Saintillan, M.J. Shelley, Phys. Rev. Lett. 100, 178103 (2008).ADSCrossRefGoogle Scholar
  20. 20.
    G.K. Batchelor, An Introduction to Fluid Dynamics (Cambridge University Press, Cambridge, UK, 1967). .Google Scholar
  21. 21.
    T. Beatus, R. Bar-Ziv, T. Tlusty, Phys. Rev. Lett. 99, 124502 (2007).ADSCrossRefGoogle Scholar
  22. 22.
    G.B. Jeffery, Proc. R. Soc. London, Ser. A 102, 161 (1922).ADSCrossRefGoogle Scholar
  23. 23.
    N. Liron, S. Mochon, J. Eng. Mech. 10, 287 (1976).CrossRefzbMATHGoogle Scholar
  24. 24.
    D. Long, A. Ajdari, Eur. Phys. J. E 4, 29 (2001).CrossRefGoogle Scholar
  25. 25.
    E. Lauga, T. Powers, Rep. Prog. Phys. 72, 096601 (2009).MathSciNetADSCrossRefGoogle Scholar
  26. 26.
    A. Baskaran, M. Marchetti, Proc. Natl. Acad. Sci. U.S.A. 106, 15567 (2009).ADSCrossRefGoogle Scholar
  27. 27.
    J. Crowley, Phys. Fluids 19, 1296 (1976).ADSCrossRefzbMATHGoogle Scholar
  28. 28.
    A.A. Evans, T. Ishikawa, T. Yamaguchi, E. Lauga, Phys. Fluids 23, 111702 (2011).ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • N. Desreumaux
    • 1
    Email author
  • N. Florent
    • 2
  • E. Lauga
    • 2
  • D. Bartolo
    • 1
  1. 1.Laboratoire de Physique et Mécanique des Milieux Hétérogénes, CNRS, ESPCIUniversité Paris 6, Université Paris 7ParisFrance
  2. 2.Department of Mechanical and Aerospace EngineeringUniversity of California San DiegoLa JollaUSA

Personalised recommendations