Advertisement

Evidence from adiabatic scanning calorimetry for the Halperin-Lubensky-Ma effect at the N-SmA phase transitions in mixtures of 7OCB+heptane with an injected SmA phase

  • C. S. P. Tripathi
  • P. Losada-Pérez
  • J. Leys
  • G. Cordoyiannis
  • C. Glorieux
  • J. Thoen
Regular Article

Abstract

The high-resolution adiabatic scanning calorimetric technique has been used to investigate the nematic-smectic A transition (N-SmA in binary mixtures of the non-smectogenic liquid crystal heptyloxycyanobiphenyl (7OCB) and heptane, exhibiting a so-called injected smectic A phase. With the exception of a mixture with the lowest heptane mole fraction for which only an upper limit of 0.2 ± 0.2 J kg−1 for a possible latent heat could be obtained, for all other mixtures finite latent heats were obtained. The mole fraction dependence of the latent heat could be well fitted with a crossover function consistent with a mean-field free energy expression with a non-zero cubic term arising from the Halperin-Lubensky-Ma (HLM) coupling between the SmA order parameter and the orientational director fluctuations. The mole fraction dependence of the heat capacity effective critical exponents is similar to that observed in mixtures of the two liquid crystals octyloxycyanobiphenyl (8OCB) and nonylcyanobiphenyl (9OCB). The thermal behavior observed along the N-SmA phase transition line yields further strong evidence for the HLM coupling effect.

Keywords

Soft Matter: Liquid crystals 

References

  1. 1.
    P.G. de Gennes, J. Prost, The Physics of Liquid Crystals (Clarendon, Oxford, 1993).Google Scholar
  2. 2.
    G.B. Kasting, K.J. Lushington, C.W. Garland, Phys. Rev. B 22, 321 (1980).ADSCrossRefGoogle Scholar
  3. 3.
    J. Thoen, H. Marynissen, W. Van Dael, Phys. Rev. A 26, 2886 (1982).ADSCrossRefGoogle Scholar
  4. 4.
    J. Thoen, H. Marynissen, W. Van Dael, Phys. Rev. Lett. 52, 204 (1984).ADSCrossRefGoogle Scholar
  5. 5.
    C.W. Garland, G. Nounesis, Phys. Rev. E 49, 2964 (1994).ADSCrossRefGoogle Scholar
  6. 6.
    J. Thoen, G. Cordoyiannis, C. Glorieux, Liq. Cryst. 36, 669 (2009).CrossRefGoogle Scholar
  7. 7.
    K. Kobayashi, Phys. Lett. A 31, 125 (1970).ADSCrossRefGoogle Scholar
  8. 8.
    W.L. MacMillan, Phys. Rev. A 4, 1238 (1971).ADSCrossRefGoogle Scholar
  9. 9.
    P.G. de Gennes, Mol. Cryst. Liq. Cryst. 21, 49 (1973).CrossRefGoogle Scholar
  10. 10.
    B.I. Halperin, T.C. Lubensky, S.K. Ma, Phys. Rev. Lett. 32, 292 (1974).ADSCrossRefGoogle Scholar
  11. 11.
    H. Marynissen, J. Thoen, W. Van Dael, Mol. Cryst. Liq. Cryst. 124, 195 (1985).CrossRefGoogle Scholar
  12. 12.
    M.A. Anisimov, V.P. Voronov, A.O. Kulkov, V.N. Petukhov, F. Kholmurodov, Mol. Cryst. Liq. Cryst. 150b, 399 (1987).Google Scholar
  13. 13.
    M.A. Anisimov, V.P. Voronov, E.E. Gorodetskii, V.E. Podneks, F. Kholmodurov, JETP Lett. 45, 425 (1987).ADSGoogle Scholar
  14. 14.
    M.A. Anisimov, P. Cladis, E. Gorodetskii, D. Huse, V. Podneks, V. Taratuta, W. van Saarloos, V. Voronov, Phys. Rev. A 41, 6749 (1990).ADSCrossRefGoogle Scholar
  15. 15.
    G. Cordoyiannis, C.S.P. Tripathi, C. Glorieux, J. Thoen, Phys. Rev. E. 82, 031707 (2010).ADSCrossRefGoogle Scholar
  16. 16.
    J. Thoen, Int. J. Mod. Phys. B 9, 2157 (1995).ADSCrossRefGoogle Scholar
  17. 17.
    J. Caerels, C. Glorieux, J. Thoen, Phys. Rev. E 65, 031704 (2002).ADSCrossRefGoogle Scholar
  18. 18.
    K. Denolf, G. Cordoyiannis, C. Glorieux, J. Thoen, Phys. Rev. E 76, 051702 (2007).ADSCrossRefGoogle Scholar
  19. 19.
    K.P. Sigdel, G.S. Iannacchione, Phys. Rev. E 82, 051702 (2010).ADSCrossRefGoogle Scholar
  20. 20.
    H. Heuer, H. Kneppe, F. Schneider, Ber. Bunsenges. Phys. Chem. 93, 923 (1989).Google Scholar
  21. 21.
    Y. Yamaoka, Y. Taniguchi, S. Yasuzuka, Y. Yamamura, K. Saito, J. Chem. Phys. 135, 044705 (2011).ADSCrossRefGoogle Scholar
  22. 22.
    M.E. Fisher, Phys. Rev. 176, 257 (1968).ADSCrossRefGoogle Scholar
  23. 23.
    M.B. Sied, J. Salud, D.O. López, H. Allouchi, S. DDíez, J. Phys. Chem. B 107, 7820 (2003).CrossRefGoogle Scholar
  24. 24.
    J. Thoen, in Heat Capacities: Liquids, Solutions and Vapours (The royal Society of Chemistry, London, 2010) Chapt. 13.Google Scholar
  25. 25.
    J.N. Murrel, E.A. Boucher, Properties of Liquids and Solutions (Wiley, New York, 1982) Chapt. 6.Google Scholar
  26. 26.
    A. Yethiraj, R. Mukhopadhyay, J. Bechhoefer, Phys. Rev. E 65, 021702 (2002).ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • C. S. P. Tripathi
    • 1
  • P. Losada-Pérez
    • 1
  • J. Leys
    • 1
  • G. Cordoyiannis
    • 2
    • 3
  • C. Glorieux
    • 1
  • J. Thoen
    • 1
  1. 1.Laboratorium voor Akoestiek en Thermische Fysica, Departement Natuurkunde en SterrenkundeKU LeuvenLeuvenBelgium
  2. 2.Condensed Matter Physics DepartmentJožef Stefan InstituteLjubljanaSlovenia
  3. 3.Department of PhysicsUniversity of AthensAthensGreece

Personalised recommendations