Advertisement

Minimal polar swimmer at low Reynolds number

  • Ankita Pandey
  • R. Aditi SimhaEmail author
Regular Article

Abstract

We propose a minimal model for a polar swimmer, consisting of two spheres connected by a rigid slender arm, at low Reynolds number. The propulsive velocity for the proposed model is the maximum for any swimming cycle with the same variations in its two degrees of freedom and its displacement in a cycle is achieved entirely in one step. The stroke averaged flow field generated by the contractile swimmer at large distances is found to be dipolar. In addition, the changing radius of one of the spheres generates the field of a potential doublet centered at its initial position.

Keywords

Living systems: Structure and Function 

References

  1. 1.
    J. Blake, J. Fluid. Mech. 46, 199 (1971).ADSCrossRefzbMATHGoogle Scholar
  2. 2.
    J. Lighthill, SIAM Rev. 18, 161 (1976).MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    C. Brennen, H. Winet, Annu. Rev. Fluid Mech. 9, 339 (1977).ADSCrossRefGoogle Scholar
  4. 4.
    E.M. Purcell, Am. J. Phys. 45, 1 (1977).ADSCrossRefGoogle Scholar
  5. 5.
    A. Najafi, R. Golestanian, Phys. Rev. E 69, 069201 (2004).CrossRefGoogle Scholar
  6. 6.
    J.E. Avron, O. Kenneth, D.H. Oaknin, New J. Phys. 7, 234 (2005).ADSCrossRefGoogle Scholar
  7. 7.
    R. Dreyfus, J. Baudry, H.A. Stone, Eur. Phys. J. B 47, 161 (2005).ADSCrossRefGoogle Scholar
  8. 8.
    T. Vicsek, A. Czirok, E. Ben-Jacob, I. Cohen, O. Shochet, Phys. Rev. Lett. 75, 1226 (1995).ADSCrossRefGoogle Scholar
  9. 9.
    J. Toner, Y. Tu, Phys. Rev. Lett. 75, 4326 (1995).ADSCrossRefGoogle Scholar
  10. 10.
    R.A. Simha, S. Ramaswamy, Phys. Rev. Lett. 89, 058101 (2002).ADSCrossRefGoogle Scholar
  11. 11.
    Y. Hatwalne, S. Ramaswamy, M. Rao, R.A. Simha, Phys. Rev. Lett. 92, 118101 (2004).ADSCrossRefGoogle Scholar
  12. 12.
    A. Baskaran, M.C. Marchetti, Proc. Natl. Acad. Sci. U.S.A. 106, 15567 (2009).ADSCrossRefGoogle Scholar
  13. 13.
    S. Ramaswamy, Annu. Rev. Condens. Matter Phys. 75, 4326 (2010).Google Scholar
  14. 14.
    X.L. Wu, A. Libchaber, Phys. Rev. Lett. 84, 3017 (2000).ADSCrossRefGoogle Scholar
  15. 15.
    C. Dombrowski, L. Cisneros, S. Chatkaew, R.E. Goldstein, J.O. Kessler, Phys. Rev. Lett. 93, 098103 (2004).ADSCrossRefGoogle Scholar
  16. 16.
    B. Szabo, G.J. Szollosi, B. Gonci, Z. Jurnyi, D. Selmeczi, T. Vicsek, Phys. Rev. E 74, 061908 (2006).ADSCrossRefGoogle Scholar
  17. 17.
    F. Nedelec, T. Surrey, A.C. Maggs, S. Leibler, Nature 389, 305 (1997).ADSCrossRefGoogle Scholar
  18. 18.
    V. Schaller, C. Weber, C. Semmrich, E. Frey, A. Bausch, Nature 467, 73 (2010).ADSCrossRefGoogle Scholar
  19. 19.
    A. Sokolov, I.S. Aranson, Phys. Rev. Lett. 103, 148101 (2009).ADSCrossRefGoogle Scholar
  20. 20.
    S. Rafai, L. Jibuti, P. Peyla, Phys. Rev. Lett. 104, 098102 (2010).ADSCrossRefGoogle Scholar
  21. 21.
    V. Narayan, S. Ramaswamy, N. Menon, Science 317, 105 (2007).ADSCrossRefGoogle Scholar
  22. 22.
    C.M. Pooley, G.P. Alexander, J.M. Yeomans, Phys. Rev. Lett. 99, 228103 (2007).ADSCrossRefGoogle Scholar
  23. 23.
    J. Happel, H. Brenner, Low Reynolds Number Hydrodynamics (Martinus Nijhoff Publishers, 1983).Google Scholar
  24. 24.
    G.K. Batchelor, J. Fluid. Mech. 74, 1 (1976).MathSciNetADSCrossRefzbMATHGoogle Scholar
  25. 25.
    G.K. Batchelor, An Introduction To Fluid Dynamics (Cambridge University Press, 1997).Google Scholar
  26. 26.
    D.J. Earl, C.M. Pooley, J.F. Ryder, I. Bredberg, J.M. Yeomans, J. Chem. Phys. 126, 064703 (2007).ADSCrossRefGoogle Scholar
  27. 27.
    A.T. Chwang, T.Y.-T. Wu, J. Fluid. Mech. 67, 787 (1975).MathSciNetADSCrossRefzbMATHGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of PhysicsIndian Institute of Technology MadrasChennaiIndia

Personalised recommendations