Translocation of polymers in a lattice model

  • S. Żurek
  • M. Kośmider
  • A. Drzewiński
  • J. M. J. van Leeuwen
Regular Article


Voltage-driven polymer translocation is studied by means of a stochastic lattice model. The model incorporates voltage drop over the membrane as a bias in the hopping rate through the pore and exhibits the two main ingredients of the translocation process: driven motion through the pore and diffusive supply of chain length towards the pore on the cis-side and the drift away from the pore on the trans-side. The translocation time is either bias limited or diffusion limited. In the bias-limited regime the translocation time is inversely proportional to the voltage drop over the membrane. In the diffusion-limited regime the translocation time is independent of the applied voltage, but it is rather sensitive to the motion rules of the model. We find that the whole regime is well described by a single curve determined by the initial slope and the saturation value. The dependence of these parameters on the length of the chain, the motion rules and the repton statistics are established. Repulsion of reptons as well as the increase of chain length decrease the throughput of the polymer through the pore. As for free polymers, the inclusion of a mechanism for hernia creations/annihilations leads to the cross-over from Rouse-like behaviour to reptation. For the experimentally most relevant case (Rouse dynamics) the bimodal power law dependence of the translocation time on the chain length is found.


Soft Matter: Polymers and Polyelectrolytes 


  1. 1.
    J.J. Kasianowitz, E. Brandin, D. Branton, D. Deamer, Proc. Natl. Acad. Sci. U.S.A. 93, 13770 (1996)ADSCrossRefGoogle Scholar
  2. 2.
    Amit Meller, Lucas Nivon, Eric Brandin, Jene Golovchenko, Daniel Branton, Proc. Natl. Acad. Sci. U.S.A. 97, 1079 (2000)ADSCrossRefGoogle Scholar
  3. 3.
    Amit Meller, Lucas Nivon, Daniel Branton, Phys. Rev. Lett. 86, 3435 (2001)ADSCrossRefGoogle Scholar
  4. 4.
    R.M.M. Smeets, S.W. Kowalczyk, A.R. Hall, N.H. Dekker, C. Dekker, Nano Lett. 9, 3089 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    S.W. Kowalczyk, M.W. Tuijtel, S.P. Donkers, C. Dekker, Nano Lett. 10, 1414 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    M. Gershow, J.A. Golovchenko, Nature Nanotechnol. 2, 775 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    Bo Lu, Fernando Albertorio, David P. Hoogerheide, Jene A. Golovchenko, Biophys. J. 101, 70 (2011)CrossRefGoogle Scholar
  8. 8.
    G.F. Schneider, S.W. Kowalczyk, V.E. Calado, G. Pandraud, H.W. Zandbergen, L.M.K. Vandersypen, C. Dekker, Nano Lett. 10, 3163 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    D. Panja, G.T. Barkema, J. Chem. Phys. 132, 014902 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    D. Branton et al., Nat. Biotechnol. 26, 1146 (2008)CrossRefGoogle Scholar
  11. 11.
    S. Zurek, A. Drzewiński, Comp. Meth. Sci. Technol. 16, 211 (2010)Google Scholar
  12. 12.
    M. Rubinstein, Phys. Rev. Lett. 59, 1946 (1987)ADSCrossRefGoogle Scholar
  13. 13.
    T.A.J. Duke, Phys. Rev. Lett. 62, 2877 (1989)ADSCrossRefGoogle Scholar
  14. 14.
    Kaifu Luo, Tapio Ala-Nissila, See-Chen Ying, Aniket Bhattacharya, Phys. Rev. Lett. 99, 148102 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    K. Luo, T. Ala-Nissila, S.-C. Ying, R. Metzler, EPL 88, 68006 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    J.M.J. van Leeuwen, A. Drzewiński, Phys. Rep. 475, 53 (2009)MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    B. Widom, J.L. Viovy, A.D. Defontaines, J. Phys. I 1, (1991)Google Scholar
  18. 18.
    S. Żurek, A. Drzewiński, J.M.J. van Leeuwen, J. Stat. Mech., P05006 (2011)Google Scholar
  19. 19.
    A.Z. Grzybowski, Z. Domański, Sci. Res. Inst. Math. 1, 5 (2011)Google Scholar
  20. 20.
    Y. Kantor, M. Kardar, Phys. Rev. E 69, 021806 (2004)ADSCrossRefGoogle Scholar
  21. 21.
    A. Bhattacharya, W.H. Morrison, K. Luo, T. Ala-Nissila, S.-C. Ying, A. Milchev, K. Binder, Eur. Phys. J. E 29, 423 (2009)CrossRefGoogle Scholar
  22. 22.
    V.V. Lehtola, R.P. Linna, K. Kaski, EPL 85, 58006 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    R.P. Linna, K. Kaski, arXiv:1112.5091 (2011)
  24. 24.
    S. Żurek, M. Kośmider, A. Drzewiński, J.M.J. van Leeuwen, in preparationGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • S. Żurek
    • 1
  • M. Kośmider
    • 1
  • A. Drzewiński
    • 1
  • J. M. J. van Leeuwen
    • 2
  1. 1.Institute of PhysicsUniversity of Zielona GóraZielona GóraPoland
  2. 2.Instituut-LorentzUniversity of LeidenLeidenThe Netherlands

Personalised recommendations