A toy model of fractal glioma development under RF electric field treatment

Regular Article

Abstract

A toy model for glioma treatment by a radio frequency electric field is suggested. This low-intensity, intermediate-frequency alternating electric field is known as the tumor-treating field (TTF). In the framework of this model the efficiency of this TTF is estimated, and the interplay between the TTF and the migration-proliferation dichotomy of cancer cells is considered. The model is based on a modification of a comb model for cancer cells, where the migration-proliferation dichotomy becomes naturally apparent. Considering glioma cancer as a fractal dielectric composite of cancer cells and normal tissue cells, a new effective mechanism of glioma treatment is suggested in the form of a giant enhancement of the TTF. This leads to the irreversible electroporation that may be an effective non-invasive method of treating brain cancer.

Keywords

Living systems: Cellular Processes 

References

  1. 1.
    E.D. Kirson et al., Cancer Res. 64, 3288 (2004).CrossRefGoogle Scholar
  2. 2.
    E.D. Kirson et al., Proc. Natl. Acad. Sci. U.S.A. 104, 10152 (2007).ADSCrossRefGoogle Scholar
  3. 3.
    Y. Palti, Europ. Oncol. Dis. 1, 89 (2007).Google Scholar
  4. 4.
    H.A. Pohl, Dielectrophoresis (Cambridge University Press, Cambridge, 1978).Google Scholar
  5. 5.
    D.H. Geho et al., Physiology 20, 194 (2005).CrossRefGoogle Scholar
  6. 6.
    A. Giese et al., Int. J. Cancer 67, 275 (1996).CrossRefGoogle Scholar
  7. 7.
    A. Giese et al., J. Clin. Oncol. 21, 1624 (2003).CrossRefGoogle Scholar
  8. 8.
    E. Khain, L.M. Sander, Phys. Rev. Lett. 96, 188103 (2006).ADSCrossRefGoogle Scholar
  9. 9.
    H. Hatzikirou, D. Basanta, M. Simon, K. Schaller, A. Deutsch, Math. Med. Biol. 7, 1 (2010).Google Scholar
  10. 10.
    A. Chauviere, L. Prziosi, H. Byrne, Math. Med. Biol. 27, 255 (2010).MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    A.V. Kolobov, V.V. Gubernov, A.A. Polezhaev, Math. Model. Nat. Phenom. 6, 27 (2011).MathSciNetCrossRefGoogle Scholar
  12. 12.
    S. Fedotov, A. Iomin, L. Ryashko, Phys. Rev. E 84, 061131 (2011).ADSCrossRefGoogle Scholar
  13. 13.
    Yu. Polevaya, I. Ermolina, M. Schlesinger, B.-Z. Ginzburg, Yu. Feldman, Biochim. Biophys. Acta 1419, 257 (1999).CrossRefGoogle Scholar
  14. 14.
    U.A. Khan et al., IEEE Trans. Microwave Theor. Tech. 55, 2887 (2007).ADSCrossRefGoogle Scholar
  15. 15.
    E.W. Montroll, M.F. Shlesinger, in Studies in Statistical Mechanics, edited by J. Lebowitz, E.W. Montroll, Vol. 11 (Noth-Holland, Amsterdam, 1984).Google Scholar
  16. 16.
    R. Metzler, J. Klafter, Phys. Rep. 339, 1 (2000).MathSciNetADSCrossRefMATHGoogle Scholar
  17. 17.
    A. Iomin, Phys. Rev. E 73, 061918 (2006).ADSCrossRefGoogle Scholar
  18. 18.
    E. Baskin, A. Iomin, Chaos, Solitons Fractals 44, 335 (2011).MathSciNetADSCrossRefMATHGoogle Scholar
  19. 19.
    A. Iomin, Phys. Rev. E 83, 052106 (2011).MathSciNetADSCrossRefGoogle Scholar
  20. 20.
    J.R. Liang, X.T. Wang, W.Y. Qiu, Chaos, Solitons Fractals 16, 107 (2003).MathSciNetADSCrossRefMATHGoogle Scholar
  21. 21.
    I. Podlubny, Fractional Differential Equations (Academic Press, San Diego, 1999).Google Scholar
  22. 22.
    K.B. Oldham, J. Spanier, The Fractional Calculus (Academic Press, New York, 1974).Google Scholar
  23. 23.
    B.J. West, M. Bologna, P. Grigolini, Physics of Fractal Operators (Springer, New York, 2002).Google Scholar
  24. 24.
    S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives (Gordon and Breach, New York, 1993).Google Scholar
  25. 25.
    I.M. Sokolov, J. Klafter, A. Blumen, Phys. Today 55, 48 (2002).CrossRefGoogle Scholar
  26. 26.
    H. Bateman, A. Erdélyi, Higher Transcendental Functions, Vol. 3 (Mc Graw-Hill, New York, 1955).Google Scholar
  27. 27.
    M.V. Berry, I.C. Percival, Opt. Acta 33, 577 (1986).ADSCrossRefGoogle Scholar
  28. 28.
    D. ben-Avraam, S. Havlin, Diffusion and Reactions in Fractals and Disodered Systems (Cambridge University Press, Cambridge, 2000).Google Scholar
  29. 29.
    E. Baskin, A. Iomin, EPL 96, 54001 (2011).ADSCrossRefGoogle Scholar
  30. 30.
    L.D. Landau, E.M. Lifshitz, L.P. Pitaevskii, Electrodynamics of Continuous Media (Butterworth-Heinenmann Ltd, Oxford, 1995).Google Scholar
  31. 31.
    C.F. Bohren, D.R. Huffman, Absorbtion and Scattering of Light by Small Particles (John Wyley & Sons Inc, New York, 1983).Google Scholar
  32. 32.
    B. Rubinsky, G. Onik, P. Mikus, Technol. Cancer Res. Treat. 6, 37 (2007).Google Scholar
  33. 33.
    A.K. Sarychev, V.M. Shalaev, Electrodynamics of Metamaterials (World Scientic, Singapore, 2007).Google Scholar
  34. 34.
    M.I. Stockman, Phys. Today 64, 39 (2011).CrossRefGoogle Scholar
  35. 35.
    S. Fedotov, A. Iomin, Phys. Rev. Lett. 98, 118101 (2007).ADSCrossRefGoogle Scholar
  36. 36.
    S. Fedotov, A. Iomin, Phys. Rev. E 77, 031911 (2008).MathSciNetADSCrossRefGoogle Scholar
  37. 37.
    G.H. Weiss, S. Havlin, Physica A 134, 474 (1986).ADSCrossRefGoogle Scholar
  38. 38.
    E. Baskin, A. Iomin, Phys. Rev. Lett. 93, 120603 (2004).ADSCrossRefGoogle Scholar
  39. 39.
    V.E. Arkhincheev, E.M. Baskin, Sov. Phys. JETP 73, 161 (1991).Google Scholar
  40. 40.
    A. Iomin, E. Baskin, Phys. Rev. E 71, 061101 (2005).ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of PhysicsHaifaIsrael

Personalised recommendations