Advertisement

Simulating self-organized molecular patterns using interaction-site models

  • M. Balbás Gambra
  • C. Rohr
  • K. Gruber
  • B. A. Hermann
  • T. Franosch
Regular Article

Abstract

Molecular building blocks interacting at the nanoscale organize spontaneously into stable monolayers that display intriguing long-range ordering motifs on the surface of atomic substrates. The patterning process, if appropriately controlled, represents a viable route to manufacture practical nanodevices. With this goal in mind, we seek to capture the salient features of the self-assembly process by means of an interaction-site model. The geometry of the building blocks, the symmetry of the underlying substrate, and the strength and range of interactions encode the self-assembly process. By means of Monte Carlo simulations, we have predicted an ample variety of ordering motifs which nicely reproduce the experimental results. Here, we explore in detail the phase behavior of the system in terms of the temperature and the lattice constant of the underlying substrate.

Keywords

Soft Matter: Interfacial Phenomena and Nanostructured Surfaces 

References

  1. 1.
    L. Bartels, Nat. Chem. 2, 87 (2010).CrossRefGoogle Scholar
  2. 2.
    J.V. Barth, G. Costantini, K. Kern, Nature 437, 671 (2005).ADSCrossRefGoogle Scholar
  3. 3.
    J.M. Lehn, Science 295, 2400 (2002).ADSCrossRefGoogle Scholar
  4. 4.
    C. Joachim, J.K. Gimzewski, A. Aviram, Nature 408, 541 (2000).ADSCrossRefGoogle Scholar
  5. 5.
    G. Tomba, L. Ciacchi, A.D. Vita, Adv. Mat. 21, 1055 (2009).CrossRefGoogle Scholar
  6. 6.
    D. Shi et al., Phys. Rev. Lett. 96, 226101 (2006).ADSCrossRefGoogle Scholar
  7. 7.
    W. Chen, H. Li, H. Huang, Y. Fu, H.L. Zhang, J. Ma, A.T.S. Wee, J. Am. Chem. Soc. 130, 12286 (2008).Google Scholar
  8. 8.
    B. Ilan, G.M. Florio, M.S. Hybertsen, B.J. Berne, G.W. Flynn, Nano Lett. 8, 3160 (2008).ADSCrossRefGoogle Scholar
  9. 9.
    H. Glowatzki, B. Bröker, R.P. Blum, O.T. Hofmann, A. Vollmer, R. Rieger, K. Mullen, E. Zojer, J.P. Rabe, N. Koch, Nano Lett. 8, 3825 (2008).ADSCrossRefGoogle Scholar
  10. 10.
    A. Breitruck, H.E. Hoster, R.J. Behm, J. Phys. Chem. C 113, 21265 (2009).CrossRefGoogle Scholar
  11. 11.
    F. Silly, U. Weber, A. Shaw, V. Burlakov, M. Castell, G. Briggs, D. Pettifor, Phys. Rev. B 77, 201408 (2008).ADSCrossRefGoogle Scholar
  12. 12.
    U. Weber, V.M. Burlakov, L. Perdigao, R. Fawcett, P. Beton, N. Champness, J. Jefferson, G. Briggs, D. Pettifor, Phys. Rev. Lett. 100, 156101 (2008).ADSCrossRefGoogle Scholar
  13. 13.
    C. Rohr, M. Balbás Gambra, K. Gruber, E.C. Constable, E. Frey, T. Franosch, B.A. Hermann, Nano Lett. 10, 833 (2010).ADSCrossRefGoogle Scholar
  14. 14.
    B.A. Hermann, C. Rohr, M. Balbás Gambra, A. Malecki, M.S. Malarek, E. Frey, T. Franosch, Phys. Rev. B 82, 165451 (2010).ADSCrossRefGoogle Scholar
  15. 15.
    C. Rohr, M. Balbás Gambra, K. Gruber, E.C. Constable, T. Franosch, B.A. Hermann, Chem. Comm. 47, 1800 (2011).CrossRefGoogle Scholar
  16. 16.
    C.J. Hawker, J.M.J. Fréchet, J. Am. Chem. Soc. 112, 7638 (1990).CrossRefGoogle Scholar
  17. 17.
    C.J. Hawker, J.M.J. Fréchet, J. Chem. Soc. Chem. Commun. 15, 1010 (1990).CrossRefGoogle Scholar
  18. 18.
    B.A. Hermann, L.J. Scherer, C.E. Housecroft, E.C. Constable, Adv. Funct. Mater. 16, 221 (2006).CrossRefGoogle Scholar
  19. 19.
    E.C. Constable, M. Haeusler, B.A. Hermann, C.E. Housecroft, M. Neuburger, S. Schaffner, L.J. Scherer, Cryst. Eng. Comm. 9, 176 (2007).CrossRefGoogle Scholar
  20. 20.
    A.K. Rappé, C.J. Casewit, K.S. Colwell, W.A. Goddard, W.M. Skiff, J. Am. Chem. Soc. 114, 10024 (1992).CrossRefGoogle Scholar
  21. 21.
    S. Yin, C. Wang, X. Qiu, B. Xu, C. Bai, Surf. Interface Anal. 32, 248 (2001).CrossRefGoogle Scholar
  22. 22.
    F. Tournus, S. Latil, M.I. Heggie, J.C. Charlier, Phys. Rev. B 72, 075431 (2005).ADSCrossRefGoogle Scholar
  23. 23.
    J.P. Garrahan, A. Stannard, M.O. Blunt, P.H. Beton, Proc. Natl. Acad. Sci. U.S.A. 106, 15209 (2009).ADSCrossRefGoogle Scholar
  24. 24.
    K. Tahara, E. Ghijsens, M. Matsushita, P. Szabelski, S. De Feyter, Y. Tobe, Chem. Commun. 47, 11459 (2011).CrossRefGoogle Scholar
  25. 25.
    P. Szabelski, S. De Feyter, M. Drach, S. Lei, Langmuir 26, 9506 (2010).CrossRefGoogle Scholar
  26. 26.
    D. Frenkel, B. Smit, Understanding molecular simulation: from algorithms to applications (Academic Press, 2002). .Google Scholar
  27. 27.
    D.P. Landau, K. Binder, A guide to Monte Carlo simulations in statistical physics (Cambridge University Press, 2005).Google Scholar
  28. 28.
    K. Binder, D. Heermann, Monte Carlo simulation in statistical physics: an introduction (Springer Verlag, 2002).Google Scholar
  29. 29.
    S. Kirkpatrick, J. Stat. Phys. 34, 975 (1984).MathSciNetADSCrossRefGoogle Scholar
  30. 30.
    S. Kirkpatrick, C. Gelatt, M. Vecchi, Science 220, 671 (1983).MathSciNetADSCrossRefzbMATHGoogle Scholar
  31. 31.
    V. Černy, J. Optim. Theor. Appl. 45, 41 (1985).CrossRefzbMATHGoogle Scholar
  32. 32.
    D. Schattschneider, Am. Math. Mon. 85, 439 (1978).MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    L. Merz, H.J. Güntherodt, L.J. Scherer, E.C. Constable, C.E. Housecroft, M. Neuburger, B.A. Hermann, Chemistry 11, 2307 (2005).CrossRefGoogle Scholar
  34. 34.
    S. Forrest, Science 261, 872 (1993).ADSCrossRefGoogle Scholar
  35. 35.
    J.H. Holland, Sci. Am. 267, 66 (1992).ADSCrossRefGoogle Scholar
  36. 36.
    J. Fornleitner, F.L. Verso, G. Kahl, C.N. Likos, Soft Matter 4, 480 (2008).ADSCrossRefGoogle Scholar
  37. 37.
    D. Gottwald, G. Kahl, C.N. Likos, J. Chem. Phys. 122, 204503 (2005).ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • M. Balbás Gambra
    • 1
  • C. Rohr
    • 2
  • K. Gruber
    • 2
  • B. A. Hermann
    • 2
  • T. Franosch
    • 1
    • 3
  1. 1.Arnold Sommerfeld Center for Theoretical Physics (ASC) and Center for NanoScience (CeNS), Fakultät für PhysikLudwig-Maximilians-Universität MünchenMünchenGermany
  2. 2.Walther-Meißner Institute for Low Temperature Research and Center for NanoScience, Department of PhysicsLudwig-Maximilians-Universität MünchenGarchingGermany
  3. 3.Institut für Theoretische PhysikFriedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany

Personalised recommendations