Advertisement

Structural and technical details of the Kirkwood-Buff integrals from the optimization of ionic force fields: focus on fluorides

Regular Article

Abstract

Results on the structural details of Kirkwood-Buff integrals obtained from the optimization of ionic force fields are presented. We have proposed and make use of an optimization scheme for ionic force fields, which is based on the modification of the cation-anion mixing rules, the calculation of the thermodynamics properties of various monovalent salt solutions according to the Kirkwood-Buff theory of solutions and the comparison to relevant experimental findings. Here, we complete and extend our calculations and analysis as we focus on the technical details of this optimization procedure and the case of fluorides, which have been proven difficult to handle. Important insight is given on the dependence of the radial distribution functions, the short-ranged potentials of mean force, and the Kirkwood-Buff integrals of the salt solutions on the different scaling factors in the mixing rules. Specifically, the way the structural details and inherent characteristics of the above properties are affected by the quantitative and qualitative differences in the mixing rules for a variety of common biologically relevant monovalent salts is mainly addressed. We conclude on the efficiency of this scheme, again with a focus on the fluorides. In the end, we provide a variation of the ion-pair mixing rules scaling factors with salt concentration to identify regimes for which different mixing rules prefactors lead to well-optimized force fields. All results are obtained through Molecular Dynamics simulations using previously optimized force fields for the monovalent ions.

Keywords

Flowing Matter: Liquids and Complex Fluids 

References

  1. 1.
    D.E. Smith, L.X. Dang, J. Chem. Phys 100, 3757 (1994).ADSCrossRefGoogle Scholar
  2. 2.
    S. Weerasinghe, P.W. Smith, J. Chem. Phys. 119, 11342 (2003).ADSCrossRefGoogle Scholar
  3. 3.
    B. Hess, C. Holm, N. van der Vegt, Phys. Rev. Lett. 96, 147801 (2006).ADSCrossRefGoogle Scholar
  4. 4.
    D. Frenkel, B. Smit, Understanding Molecular Simulations (Academic Press, New York, 1996).Google Scholar
  5. 5.
    B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, Molecular Biology of the Cell (Garland Science, New York, 2002).Google Scholar
  6. 6.
    A. Savelyev, G.A. Papoian, J. Phys. Chem. B 112, 9135 (2008).CrossRefGoogle Scholar
  7. 7.
    T.M. Chang, L.X. Dang, Chem. Rev. 106, 1305 (2006).CrossRefGoogle Scholar
  8. 8.
    P. Jungwirth, D.J. Tobias, Chem. Rev. 106, 1259 (2006).CrossRefGoogle Scholar
  9. 9.
    I.S. Joung, T.E. Cheatham III, J. Phys. Chem. B 112, 9020 (2008).CrossRefGoogle Scholar
  10. 10.
    D. Horinek, S. Mamatkulov, R.R. Netz, J. Chem. Phys. 130, 124507 (2009).ADSCrossRefGoogle Scholar
  11. 11.
    A.P. Lyubartsev, A. Laaksonen, Phys. Rev. E 55, 5689 (1997).ADSCrossRefGoogle Scholar
  12. 12.
    M. Fyta, I. Kalcher, L. Vrbka, J. Dzubiella, R.R. Netz, J. Chem. Phys. 132, 024911 (2010).ADSCrossRefGoogle Scholar
  13. 13.
    J.G Kirkwood, F.P. Buff, J. Chem. Phys. 19, 774 (1951).MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    P.G. Kusalik, G.N. Patey, J. Chem. Phys. 86, 5110 (1987).ADSCrossRefGoogle Scholar
  15. 15.
    R. Chitra, P.E. Smith, J. Chem. Phys. 114, 426 (2001).ADSCrossRefGoogle Scholar
  16. 16.
    R. Chitra, P.E. Smith, J. Chem. Phys. 106, 1491 (2002).Google Scholar
  17. 17.
    S. Weerasinghe, P.W. Smith, J. Chem. Phys. 118, 10663 (2003).ADSCrossRefGoogle Scholar
  18. 18.
    D. Horinek, R.R. Netz, J. Phys. Chem. A 115, 6125 (2011).CrossRefGoogle Scholar
  19. 19.
    M. Fyta, R.R. Netz, to be published in J. Chem. Phys. 136, issue 11 (2012).Google Scholar
  20. 20.
    B. Hess, N.F.A. van der Vegt, Proc. Natl. Acad. Sci. U.S.A. 106, 13296 (2009).ADSCrossRefGoogle Scholar
  21. 21.
    M.B. Gee et al., J. Chem. Theor. Comput. 7, 1369 (2011).CrossRefGoogle Scholar
  22. 22.
    H.J.C. Berendsen, D. van der Spoel, R. van der Drunen, Comput. Phys. Commun. 91, 43 (1995).ADSCrossRefGoogle Scholar
  23. 23.
    E. Lindahl, B. Hess, D. van der Spoel, J. Mol. Mod. 7, 306 (2001).Google Scholar
  24. 24.
    H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, A. DiNola, J.R. Haak, J. Chem. Phys. 81, 3684 (1984).ADSCrossRefGoogle Scholar
  25. 25.
    H.J.C. Berendsen, J.R. Grigera, T.P. Straatsma, J. Phys. Chem. 91, 6269 (1987).CrossRefGoogle Scholar
  26. 26.
    U. Essmann, L. Perera, M.L. Berkowitz, T. Darden, H. Lee, L.G. Pedersen, J. Chem. Phys. 103, 8577 (1995).ADSCrossRefGoogle Scholar
  27. 27.
    D. Frenkel, B. Smit, Understanding Molecular Simulation: From Algorithms to Applications (Academic Press, 1996).Google Scholar
  28. 28.
    L.X. Dang, J. Am. Chem. Soc. 117, 6954 (1995).CrossRefGoogle Scholar
  29. 29.
    L.X. Dang, J. Chem. Phys. 96, 6970 (1992).ADSCrossRefGoogle Scholar
  30. 30.
    I. Kalcher, J. Dzubiella, J. Chem. Phys. 130, 134507 (2009).ADSCrossRefGoogle Scholar
  31. 31.
    A.P. Lyubartsev, S. Marčelja, Phys. Rev. E 65, 041202 (2002).ADSCrossRefGoogle Scholar
  32. 32.
    J.E. Mayer, Equilibrium Statistical Mechanics (Pergamon, Oxford, 1968).Google Scholar
  33. 33.
    W.G. McMillan, J.E. Mayer, J. Chem. Phys. 13, 276 (1945).ADSCrossRefGoogle Scholar
  34. 34.
    J.P. Hansen, I.R. McDonald, Theory of Simple Liquids, 2nd edition (Academic Press, London, 1986).Google Scholar
  35. 35.
    A. Ben-Naim, Statistical Thermodynamics for Chemists and Biochemists (Plenum, New York, 1992).Google Scholar
  36. 36.
    C.J. Fennell, A. Bizjak, V. Vlachy, K.A. Dill, J. Phys. Chem. B 113, 6782 (2009).CrossRefGoogle Scholar
  37. 37.
    J.J. Molina, J.-F. Dufréche, M. Salanne, O. Bernard, P. Turq, J. Chem. Phys. 135, 234509 (2011).ADSCrossRefGoogle Scholar
  38. 38.
    R.A. Robinson, R.H. Stokes, Electrolyte Solutions, 2nd edition (Dover, New York, 2002).Google Scholar
  39. 39.
    R.R. Netz, Curr. Opin. Colloid Interface Sci. 9, 192 (2004).CrossRefGoogle Scholar
  40. 40.
    S. Mamatkulov, unpublished data.Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Physics Department (T37)Technical University of MunichGarchingGermany
  2. 2.Institute for Computational PhysicsUniversity of StuttgartStuttgartGermany

Personalised recommendations