Advertisement

Stress propagation in a concentrated colloidal suspension under shear

  • N. S. Martys
  • M. Khalil
  • W. L. George
  • D. Lootens
  • P. Hébraud
Regular Article

Abstract

The stress propagation in a concentrated attractive colloidal suspension under shear is studied using numerical simulations. The spatial correlations of the intercolloidal stress field are studied and an inertia-like tensor is defined in order to characterize the anisotropic nature of the stress field. It is shown that the colloids remain in a liquid order, the intercolloidal stress is strongly anisotropic. A transition under flow is observed: during a transient regime at low deformation, the stress propagates along the compression direction of the shear, whereas at larger deformations, the stress is organized into layers parallel to the (flow, vorticity) plane.

Keywords

Soft Matter: Colloids and Nanoparticles 

References

  1. 1.
    P. Varadan, M.J. Solomon, J. Rheol. 47, 943 (2003)ADSCrossRefGoogle Scholar
  2. 2.
    X. Cheng, J.H. McCoy, J.N. Israelachvili, I. Cohen, Science 333, 1276 (2011)ADSCrossRefGoogle Scholar
  3. 3.
    N.J. Wagner, J.F. Brady, Phys. Today, October issue, 27 (2009)Google Scholar
  4. 4.
    B.J. Maranzano, N.J. Wagner, J. Chem. Phys. 117, 10291 (2002)ADSCrossRefGoogle Scholar
  5. 5.
    D. Lootens, H. Van Damme, P. Hébraud, Phys. Rev. Lett. 90, 178301 (2003)ADSCrossRefGoogle Scholar
  6. 6.
    D. Lootens, H. van Damme, Y. Hémar, P. Hébraud, Phys. Rev. Lett. 95, 268302 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    M.D. Haw, Phys. Rev. Lett. 92, 185506 (2004)ADSCrossRefGoogle Scholar
  8. 8.
    D. Lootens, P. Hébraud, É. Lécolier, H. van Damme, Oil Gas Sci. Technol. 59, 31 (2004)CrossRefGoogle Scholar
  9. 9.
    E. Brown, N.A. Forman, C.S. Orellana, H. Zhang, B.W. Maynor, D.E. Betts, J.M. DeSimone, H.M. Jaeger, Nat. Mater. 9, 220 (2010)ADSGoogle Scholar
  10. 10.
    R.S. Farr, J.R. Melrose, R.C. Ball, Phys. Rev. E 55, 7203 (1997)ADSCrossRefGoogle Scholar
  11. 11.
    F. Ianni, D. Lasne, R. Sarcia, P. Hébraud, Phys. Rev. E 74, 011401 (2006)ADSCrossRefGoogle Scholar
  12. 12.
    P. Schall, D.A. Weitz, F. Spaepen, Science 318, 1895 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    B.J. Maranzano, N.J. Wagner, J. Chem. Phys. 117, 10291 (2002)ADSCrossRefGoogle Scholar
  14. 14.
    J.F. Brady, J.F. Morris, J. Fluid Mech. 348, 103 (1997)ADSCrossRefzbMATHGoogle Scholar
  15. 15.
    A. Sierou, J.F. Brady, J. Rheol. 46, 1031 (2002)ADSCrossRefGoogle Scholar
  16. 16.
    J. Bergenholtz, J.F. Brady, M. Vicic, J. Fluid Mech. 456, 239 (2002)ADSCrossRefzbMATHGoogle Scholar
  17. 17.
    D.A. Drew, Annu. Rev. Fluid Mech. 15, 261 (1983)ADSCrossRefGoogle Scholar
  18. 18.
    R.I. Nigmatulin, Dynamics of Multiphase Media (Hemisphere, New York, 1991)Google Scholar
  19. 19.
    D. Lhuillier, Eur. J. Mech. B 11, 649 (1992)MathSciNetzbMATHGoogle Scholar
  20. 20.
    J.K.G. Dhont, An Introduction to the Dynamics of Colloids, Elsevier Series in Interface Science (Elsevier, 1996)Google Scholar
  21. 21.
    L.E. Silbert, R.S. Farr, J.R. Melrose, R.C. Ball, J. Chem. Phys. 111, 4780 (1999)ADSCrossRefGoogle Scholar
  22. 22.
    M.E. Cates, J.P. Wittmer, J.-Ph. Bouchaud, P. Claudin, Phys. Rev. Lett. 81, 1841 (1998)ADSCrossRefGoogle Scholar
  23. 23.
    R.G. Larson, The Structure and Rheology of Complex Fluids (Oxford University Press, New York, 1999)Google Scholar
  24. 24.
    N.S. Martys, D. Lootens, W. George, P. Hébraud, Phys. Rev. E 80, 031401 (2009)ADSCrossRefGoogle Scholar
  25. 25.
    N.S. Martys, J. Rheol. 49, 401 (2005)ADSCrossRefGoogle Scholar
  26. 26.
    W. Pan, B. Caswell, G.E. Karniadakis, Langmuir 26, 133 (2009)CrossRefzbMATHGoogle Scholar
  27. 27.
    D.R. Foss, J.F. Brady, J. Fluid Mech. 407, 167 (2000)ADSCrossRefzbMATHGoogle Scholar
  28. 28.
    P. Español, M. Revenga, Phys. Rev. E 67, 026705 (2003)ADSCrossRefGoogle Scholar
  29. 29.
    P.J. Hoogerbrugge, J.M.V.A. Koelman, Europhys. Lett. 19, 155 (1992)ADSCrossRefGoogle Scholar
  30. 30.
    R.D. Groot, P.B. Warren, J. Chem. Phys. 107, 4423 (1997)ADSCrossRefGoogle Scholar
  31. 31.
    P. Español, P. Warren, Europhys. Lett. 30, 191 (1995)ADSCrossRefGoogle Scholar
  32. 32.
    J.N. Israelachvili, Intermolecular and Surface Forces (Academic Press, 1992)Google Scholar
  33. 33.
    S. Kim, S.J. Karrila Microhydrodynamics (Butterwort-Heinemann, 1991)Google Scholar
  34. 34.
    L.B. Chenb, C.F. Zukoski, B.J Ackerson, H.J.M. Hanley, G.C. Straty, J. Barker, C.J. Glinka, Phys. Rev. Lett. 69, 688 (1992)ADSCrossRefGoogle Scholar
  35. 35.
    E. Boek, P.V. Coveney, H.N. Lekkerkerker, P. Van der Schoot, Phys. Rev. E 55, 3124 (1997)ADSCrossRefGoogle Scholar
  36. 36.
    N.S. Martys, R.D. Mountain, Phys. Rev. E 59, 3733 (1999)ADSCrossRefGoogle Scholar
  37. 37.
    F. Varnik, J. Baschnagel, K. Binder, J. Chem. Phys. 113, 4444 (2000)ADSCrossRefGoogle Scholar
  38. 38.
    J.H. Irving, J.G. Kirkwood, J. Chem. Phys. 18, 817 (1950)MathSciNetADSCrossRefGoogle Scholar
  39. 39.
    J.-P. Hansen, I.R. McDonald, Theory of simple liquids (Academic Press, 2006)Google Scholar
  40. 40.
    R. Sarcia, P. Hébraud, Phys. Rev. E 72, 011402 (2005)ADSCrossRefGoogle Scholar
  41. 41.
    A. Sierou, J.F. Brady, J. Rheol. 46, 1031 (2002)ADSCrossRefGoogle Scholar
  42. 42.
    J.F. Brady, J.F. Morris, J. Fluid Mech. 348, 103 (1997)ADSCrossRefzbMATHGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • N. S. Martys
    • 1
  • M. Khalil
    • 2
  • W. L. George
    • 1
  • D. Lootens
    • 3
  • P. Hébraud
    • 2
  1. 1.National Institute of Standards and TechnologyGaithersburgUSA
  2. 2.CNRSIPCMSStrasbourg CedexFrance
  3. 3.Sika Technology A.G.ZürichSwitzerland

Personalised recommendations