Free surface flow between two horizontal concentric cylinders

Regular Article


Results are reported on a combined experimental and numerical investigation of a free surface flow at small Reynolds numbers. The flow is driven by the rotation of the inner of two horizontal concentric cylinders, with an inner to outer radius ratio of 0.43. The outer cylinder is stationary. The annular gap is partially filled, from 0.5 to 0.95 full, with a viscous liquid leaving a free surface. When the fraction of the annular volume filled by liquid is 0.5, a thin liquid film covers the rotating inner cylinder and reenters the liquid pool. For relatively low rotation speeds, the evolution of the film thickness is consistent with the theory for a plate being withdrawn from an infinite liquid pool. The overall liquid flow pattern at this condition consists of two counter-rotating cells: one is around the inner cylinder and the other with weaker circulation rate is in the bottom part of the annulus and nearly symmetric about the vertical axis. With increasing rotation rate, the free surface becomes more deformed, and the dynamics of the stagnation line and the cusp line dividing the cells are tracked as quantitative measures of the interface shape. In addition, the recirculating flow cells lose symmetry and the cusp deforms the free surface severely. A comparison of numerically computed flow which describes the interface by a phase-field method confirms the dynamics of the two cells and the interface deformation. For filling fraction 0.75, the liquid level is slightly above the inner cylinder and a significant decrease in size of the bottom cell with increasing rotation rate is found. For filling fractions approaching unity, the liquid flow consists of one single cell and the surface deformation remains small.


Soft Matter: Liquids and Complex Fluids 


  1. 1.
    R.T. Balmer, Nature 227, 600 (1970)ADSCrossRefGoogle Scholar
  2. 2.
    S.T. Thoroddsen, L. Mahadevan, Exp. Fluids 23, 1 (1997)CrossRefGoogle Scholar
  3. 3.
    F. Melo, S. Douady, Phys. Rev. Lett. 71, 3283 (1993)ADSCrossRefGoogle Scholar
  4. 4.
    M.C.T. Wilson, P.H. Gaskell, M.D. Savage, Phys. Fluids 17, 093601 (2005)MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    M. Brøns, Adv. Appl. Mech. 41, 1 (2007)CrossRefGoogle Scholar
  6. 6.
    P.H. Gaskell, M.D. Savage, M. Wilson, J. Fluid Mech. 337, 263 (1997)MathSciNetADSCrossRefMATHGoogle Scholar
  7. 7.
    D.D. Joseph, J. Nelson, J. Renardy, Y. Renardy, J. Fluid Mech. 223, 383 (1991)ADSCrossRefGoogle Scholar
  8. 8.
    J.-T. Jeong, H.K. Moffatt, J. Fluid Mech. 241, 1 (1992)MathSciNetADSCrossRefMATHGoogle Scholar
  9. 9.
    Y.C. Severtson, C.K. Aidun, J. Fluid Mech. 312, 173 (1996)ADSCrossRefGoogle Scholar
  10. 10.
    K.T. Kiger, J.H. Duncan, Annu. Rev. Fluid Mech. 44, 563 (2012)MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    M. Tirumkudulu, A. Tripathi, A. Acrivos, Phys. Fluids 11, 507 (1999)ADSCrossRefMATHGoogle Scholar
  12. 12.
    M.J. Karweit, S. Corrsin, Phys. Fluids 18, 111 (1975)ADSCrossRefGoogle Scholar
  13. 13.
    O.A.M. Boote, P.J. Thomas, Phys. Fluids 11, 2020 (1999)ADSCrossRefMATHGoogle Scholar
  14. 14.
    M. Tirumkudulu, A. Mileo, A. Acrivos, Phys. Fluids 12, 1615 (2000)ADSCrossRefMATHGoogle Scholar
  15. 15.
    P.J. Thomas, G.D. Riddell, S. Kooner, G.P. King, Phys. Fluids. 13, 2720 (2001)ADSCrossRefGoogle Scholar
  16. 16.
    E. Guyez, P.J. Thomas, Phys. Fluids. 21, 033301 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    B.D. Timberlake, J.F. Morris, Philos. Trans. R. Soc. A 361, 895 (2003)MathSciNetADSCrossRefMATHGoogle Scholar
  18. 18.
    B. Jin, A. Acrivos, Phys. Fluids 16, 641 (2004)MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    M. Tirumkudulu, A. Acrivos, Phys. Fluids 13, 14 (2000)ADSCrossRefGoogle Scholar
  20. 20.
    B.D. Timberlake, J.F. Morris, Phys. Fluids 14, 1580 (2002)MathSciNetADSCrossRefGoogle Scholar
  21. 21.
    I. Mutabazi, J.J. Hegseth, C.D. Andereck, J.E. Wesfreid, Phys. Rev. A 38, 4752 (1988)ADSCrossRefGoogle Scholar
  22. 22.
    P. Yue, J.J. Feng, C. Liu, J. Shen, J. Fluid Mech. 515, 293 (2004)MathSciNetADSCrossRefMATHGoogle Scholar
  23. 23.
    M.K. Berkenbush, I. Cohen, W.W. Zhang, J. Fluid Mech. 613, 171 (2008)MathSciNetADSGoogle Scholar
  24. 24.
    J. Eggers, S. Courrech du Pont, Phys. Rev. E 79, 066311 (2009)ADSCrossRefGoogle Scholar
  25. 25.
    D. Zhou, J.J. Feng, J. Non-Newtonian Fluid Mech. 165, 839 (2010)CrossRefMATHGoogle Scholar
  26. 26.
    S.D.R. Wilson, J. Engg. Math. 16, 209 (1982)ADSCrossRefMATHGoogle Scholar
  27. 27.
    P.-G. de Gennes, F. Brochard-Wyard, D. Quéré, Gouttes, bulles, perles et ondes (Editions Belin, 2002)Google Scholar
  28. 28.
    B. Jin, A. Acrivos, A. Munch, Phys. Fluids 17, 103603 (2005)MathSciNetADSCrossRefGoogle Scholar
  29. 29.
    G. Bohme, G. Pokriefke, A. Muller, Arch. Appl. Mech. 75, 619 (2006)ADSCrossRefGoogle Scholar
  30. 30.
    E. Lorenceau, F. Restagno, D. Quéré, Phys. Rev. Lett. 90, 184501 (2003)ADSCrossRefGoogle Scholar
  31. 31.
    J. Eggers, Phys. Rev. Lett. 86, 4290 (2001)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Benjamin Levich Institute and Department of Chemical EngineeringCity College of City University of New YorkNew YorkUSA

Personalised recommendations