Advertisement

The transition strength from solid to liquid colloidal dipolar clusters in precessing magnetic fields

  • A. Ray
  • Th. M. FischerEmail author
Open Access
Regular Article

Abstract

We report on the rotation of colloidal clusters of diamagnetic beads and of mixtures of paramagnetic and diamagnetic beads in a ferrofluid in a precessing external magnetic field. The precession angle of the external field is a control parameter determining the stability of the cluster. Clusters become locally unstable when the local precession angle reaches the magic angle. Cluster shape dependent depolarization fields lead to a deviation of the local from the external precession angle such that close to the external magic angle different cluster shapes might coexist. For this reason cluster transitions are weakly or strongly first-order transitions. If the transition is weakly first order a critical speeding up of the cluster rotation is observed. No speeding up occurs for strongly first-order cluster transitions with hysteresis. The strength of the first-order transition is controlled by the size of the core of the cluster.

Keywords

Soft Matter: Colloids and Nanoparticles 

Supplementary material

Supplementary material, approximately 11.8 MB

References

  1. 1.
    P. Pieranski, Contemp. Phys. 24, 25 (1983).ADSCrossRefGoogle Scholar
  2. 2.
    A. vanBlaaderen, R. Ruel, P. Wiltzius, Nature 385, 321 (1997).ADSCrossRefGoogle Scholar
  3. 3.
    James E. Martin, Eugene Venturini, Gerald L. Gulley, Jonathan Williamson, Phys. Rev. E 69, 021508 (2004).ADSCrossRefGoogle Scholar
  4. 4.
    N. Casic, S. Schreiber, P. Tierno, W. Zimmermann, Th.M. Fischer, EPL 90, 58001 (2010).ADSCrossRefGoogle Scholar
  5. 5.
    A.P. Gast, C.F. Zukoski, Adv. Colloid Interface Sci. 30, 153 (1989).CrossRefGoogle Scholar
  6. 6.
    N. Osterman, I. Poberaj, J. Dobnikar, D. Frenkel, P. Ziherl, D. Babic, Phys. Rev. Lett. 103, 228301 (2009).ADSCrossRefGoogle Scholar
  7. 7.
    G. Helgesen, P.O. Pieranski, A.T. Skjeltorp, Phys. Rev. A 42, 7271 (1990).ADSCrossRefGoogle Scholar
  8. 8.
    E.R. Andrew, A. Bradbury, R.G. Eades, Nature 182, 1659 (1958).ADSCrossRefGoogle Scholar
  9. 9.
    J. Cernak, G. Helgesen, A.T. Skjeltorp, Phys. Rev. E 70, 031504 (2004).ADSCrossRefGoogle Scholar
  10. 10.
    R.M. Erb, H.S. Son, B. Samanta, V.M. Rotello, B.B. Yellen, Nature 457, 999 (2009).ADSCrossRefGoogle Scholar
  11. 11.
    K.H. Li, B.B. Yellen, Appl. Phys. Lett. 97, 083105 (2010).ADSCrossRefGoogle Scholar
  12. 12.
    A. Ray, S. Aliaskarisohi, Th.M. Fischer, Phys. Rev. E 82, 031406 (2010).ADSCrossRefGoogle Scholar
  13. 13.
    P. Tierno, R.M. Muruganathan, Th.M. Fischer, Phys. Rev. Lett. 98, 028301 (2007).ADSCrossRefGoogle Scholar
  14. 14.
    R. Toussaint, J. Akselvoll, G. Helgesen, A.T. Skjeltorp, Phys. Rev. E 69, 011407 (2004).ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Institut für ExperimentalphysikUniversität BayreuthBayreuthGermany

Personalised recommendations