Microscopic vs. macroscopic origin of the Lehmann effect in cholesteric liquid crystals

Regular Article

Abstract

In a recent letter (EPL 97, 36006 (2012)), we have shown that the Leslie thermomechanical coupling cannot alone explain the Lehmann effect (namely the rotation of cholesteric droplets when they are subjected to a temperature gradient). This result was obtained by measuring in a compensated cholesteric mixture the “Lehmann coefficient” as a function of temperature both below and at the transition to the isotropic liquid. In this article, we detail these experiments and present new ones performed with other compensated mixtures and a diluted cholesteric mixture. The new results confirm the macroscopic origin of the Lehmann effect, in contrast to the Leslie thermomechanical effect that is clearly of microscopic origin.

Keywords

Soft Matter: Liquid crystals 

References

  1. 1.
    A.B. Harris, R.D. Kamien, T.C. Lubensky, Rev. Mod. Phys. 71, 1745 (1999).ADSCrossRefGoogle Scholar
  2. 2.
    P. Oswald, About the Leslie explanation of the Lehmann effect in cholesteric liquid crystals, to be published in EPL, Vol. 97 (2012).Google Scholar
  3. 3.
    O. Lehmann, Ann. Phys. (Leipzig) 2, 649 (1900).ADSGoogle Scholar
  4. 4.
    O. Lehmann, Flüssige Kristalle und ihr Scheinbares Leben (Verlag von Leopold Voss, Leipzig, 1921).Google Scholar
  5. 5.
    F.M. Leslie, Proc. R. Soc. London, Ser. A 307, 359 (1968).ADSCrossRefGoogle Scholar
  6. 6.
    N. Éber, I. Jánossy, Mol. Cryst. Liq. Cryst. Lett. 72, 233 (1982).CrossRefGoogle Scholar
  7. 7.
    N. Éber, I. Jánossy, Mol. Cryst. Liq. Cryst. Lett. 102, 311 (1984).CrossRefGoogle Scholar
  8. 8.
    P.-G. de Gennes, The Physics of Liquid Crystals (Clarendon Press, Oxford, 1974).Google Scholar
  9. 9.
    H. Pleiner, H.R. Brand, Mol. Cryst. Liq. Cryst. Lett. 5, 61 (1987).Google Scholar
  10. 10.
    H. Pleiner, H.R. Brand, Mol. Cryst. Liq. Cryst. Lett. 5, 183 (1988).Google Scholar
  11. 11.
    A. Dequidt, P. Oswald, EPL 80, 26001 (2007).ADSCrossRefGoogle Scholar
  12. 12.
    A. Dequidt, A. Zywociński, P. Oswald, Eur. Phys. J. E 25, 277 (2008).CrossRefGoogle Scholar
  13. 13.
    P. Oswald, A. Dequidt, EPL 83, 16005 (2008).ADSCrossRefGoogle Scholar
  14. 14.
    P. Oswald, A. Dequidt, Phys. Rev. E 77, 051706 (2008).ADSCrossRefGoogle Scholar
  15. 15.
    H. Pleiner, H.R. Brand, EPL 89, 26003 (2009).ADSCrossRefGoogle Scholar
  16. 16.
    P. Oswald, A. Dequidt, EPL 89, 26004 (2009).ADSCrossRefGoogle Scholar
  17. 17.
    P. Oswald, A. Dequidt, Phys. Rev. Lett. 100, 217802 (2008).ADSCrossRefGoogle Scholar
  18. 18.
    P. Oswald, Eur. Phys. J. E 28, 377 (2009).CrossRefGoogle Scholar
  19. 19.
    P. Oswald, L. Jørgensen, A. Żywociński, Liq. Cryst. 38, 601 (2011).CrossRefGoogle Scholar
  20. 20.
    P. Oswald, P. Pieranski, Nematic and Cholesteric Liquid Crystals: Concepts and Physical Properties Illustrated by Experiments (Taylor & Francis, CRC press, Boca Raton, 2005).Google Scholar
  21. 21.
    N.V. Madhusudana, R. Pratibha, Mol. Cryst. Liq. Cryst. 89, 249 (1982).CrossRefGoogle Scholar
  22. 22.
    P. Oswald, A. Dequidt, A. Żywociński A., Phys. Rev. E 77, 061703 (2008).ADSCrossRefGoogle Scholar
  23. 23.
    R.S. Akopyan, B.Ya Zel’dovich, Sov. Phys. JETP 60, 953 (1984).Google Scholar
  24. 24.
    R.K. Gupta, K.A. Suresh, S. Kumar, L.M. Lopatina, R.L.B. Selinger, J.V. Selinger, Phys. Rev. E 78, 041703 (2008).ADSCrossRefGoogle Scholar
  25. 25.
    C. Charles, Mesure de viscosité rotationnelle dans un cholestérique compensé, Rapport de stage de L3, Ecole Normale Supérieure de Lyon (2011).Google Scholar
  26. 26.
    A. Dequidt, Effet Lehmann dans les cholestériques, PhD Thesis (in French), Ecole Normale Supérieure de Lyon (2008).Google Scholar
  27. 27.
    O.S. Tarasov, A.P. Krekhov, L. Kramer, Rotation of cholesteric drops under d.c. electric field, unpublished (2003).Google Scholar
  28. 28.
    J.M. Gilli, P. Kamayé, Liq. Cryst. 11, 791 (1992).CrossRefGoogle Scholar
  29. 29.
    P. Mitov, P. Sixou, J. Phys. II 2, 1659 (1992).CrossRefGoogle Scholar
  30. 30.
    P. Ribière, P. Oswald, S. Pirkl, J. Phys. II 4, 127 (1994).CrossRefGoogle Scholar
  31. 31.
    J. Baudry, S. Pirkl, P. Oswald, Phys. Rev. E 60, 2990 (1999).ADSCrossRefGoogle Scholar
  32. 32.
    J.M. Gilli, L. Gil, Liq. Cryst. 17, 1 (1994).CrossRefGoogle Scholar
  33. 33.
    N.V. Madhusudana, R. Pratibha, Mol. Cryst. Liq. Cryst. Lett. 5, 43 (1987).Google Scholar
  34. 34.
    L. Gil, J.M. Gilli, Phys. Rev. Lett. 80, 5742 (1998).ADSCrossRefGoogle Scholar
  35. 35.
    O.S. Tarasov, A.P. Krekhov, L. Kramer, Phys. Rev. E 68, 031708 (2003).ADSCrossRefGoogle Scholar
  36. 36.
    O.S. Tarasov, Structural Transition and Dynamics of Liquid Crystals under Flows and Electric Fields, PhD Thesis, University of Bayreuth (2003).Google Scholar
  37. 37.
    S. Sarman, J. Chem. Phys. 110, 12218 (1999).ADSCrossRefGoogle Scholar
  38. 38.
    S. Sarman, Mol. Phys. 98, 27 (2001).ADSCrossRefGoogle Scholar
  39. 39.
    S. Sarman, Mol. Phys. 99, 1235 (2001).ADSCrossRefGoogle Scholar
  40. 40.
    T. Dauxois, M. Peyrard, Physics of Solitons (Cambridge University Press, Cambridge, 2006).Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Laboratoire de PhysiqueÉcole Normale Supérieure de Lyon, UMR 5672 of the CNRSLyonFrance

Personalised recommendations