Dynamics of interacting edge defects in copolymer lamellae

  • J. D. McGraw
  • I. D. W. Rowe
  • M. W. Matsen
  • K. Dalnoki-Veress
Regular Article

Abstract

It is known that terraces at the air-polymer interface of lamella-forming diblock copolymers do not make discontinuous jumps in height. Despite the underlying discretized structure, the height profiles are smoothly varying. The width of a transition region of a terrace edge in isolation is typically several hundreds of nanometres, resulting from a balance between surface tension, chain stretching penalties, and the enthalpy of mixing. What is less well known in these systems is what happens when two transition regions interact with one another. In this study, we investigate the dynamics of the interactions between copolymer lamellar edges. We find that the data can be well described by a model that assumes a repulsion between adjacent edges. While the model is simplistic, and does not include molecular level details, its agreement with the data suggests that some of the the underlying assumptions provide insight into the complex interplay between defects.

References

  1. 1.
    M.W. Matsen, J. Phys.: Condens. Matter 14, R21 (2002).CrossRefADSGoogle Scholar
  2. 2.
    G. Strobl, The Physics of Polymers: Concepts for Understanding their Structures and Behaviour, 3rd edn. (Springer, 2007).Google Scholar
  3. 3.
    A.K. Khandpur, S. Förster, F.S. Bates, I.W. Hamley, A.J. Ryan, W. Bras, K. Almdal, K. Mortensen, Macromolecules 28, 8796 (1995).CrossRefADSGoogle Scholar
  4. 4.
    T. Thurn-Albrecht, J. Schotter, G.A. Kästle, N. Emley, T. Schibauchi, L. Krusen-Ebaum, K. Guarini, K.T. Black, M.T. Tuominen, T.P. Russell, Science 290, 2126 (2000).CrossRefADSGoogle Scholar
  5. 5.
    C. Tang, E.M. Lennon, G.H. Fredrickson, E.J. Kramer, C.J. Hawker, Science 322, 429 (2009).CrossRefADSGoogle Scholar
  6. 6.
    C. Creton, E.J. Kramer, H.R. Brown, C.Y. Hui, Adv. Polym. Sci. 156, 53 (2002).CrossRefGoogle Scholar
  7. 7.
    I.W. Hamley, Progr. Polym. Sci. 34, 1161 (2009).CrossRefGoogle Scholar
  8. 8.
    E. Helfand, J. Chem. Phys. 62, 999 (1975).CrossRefADSGoogle Scholar
  9. 9.
    F.S. Bates, Science 251, 898 (1991).CrossRefADSGoogle Scholar
  10. 10.
    M.W. Matsen, F.S. Bates, Macromolecules 29, 1091 (1996).CrossRefADSGoogle Scholar
  11. 11.
    D.S. Herman, D.J. Kinning, E.L. Thomas, L.J. Fetters, Macromolecules 20, 2940 (1987).CrossRefADSGoogle Scholar
  12. 12.
    H. Hirokazu, H. Tanaka, K. Yamasaki, T. Hashimoto, Macromolecules 20, 1651 (1987).CrossRefADSGoogle Scholar
  13. 13.
    G.H. Fredrickson, Macromolecules 20, 2535 (1987).CrossRefADSGoogle Scholar
  14. 14.
    M. Foster, M. Sikka, N. Singh, F. Bates, S. Satija, C. Majkrzak, J. Chem. Phys. 96, 8605 (1992).CrossRefADSGoogle Scholar
  15. 15.
    A. Menelle, T. Russell, S. Anastasiadis, S. Satija, C. Majkrzak, Phys. Rev. Lett. 68, 67 (1992) ISSN 1079-7114.CrossRefADSGoogle Scholar
  16. 16.
    K. Shull, Macromolecules 25, 2122 (1992) ISSN 0024-9297.CrossRefADSGoogle Scholar
  17. 17.
    H. Tan, D. Yan, A. Shi, Macromolecules 37, 9646 (2004).CrossRefADSGoogle Scholar
  18. 18.
    P. Lambooy, T.P. Russell, G.J. Kellogg, A.M. Mayes, P.D. Gallagher, S.K. Satija, Phys. Rev. Lett. 72, 2899 (1994).CrossRefADSGoogle Scholar
  19. 19.
    W. Li, R.A. Wickham, R.A. Garbary, Macromolecules 39, 806 (2006).CrossRefADSGoogle Scholar
  20. 20.
    B. Yu, P. Sun, T. Chen, Q. Jin, D. Ding, B. Li, A.C. Shi, Phys. Rev. Lett. 96, 138306 (2006).CrossRefADSGoogle Scholar
  21. 21.
    P. Chen, H. Liang, A.C. Shi, Macromolecules 41, 8938 (2008).CrossRefADSGoogle Scholar
  22. 22.
    P. Dobriyal, H. Xiang, M. Kazuyuki, J.T. Chen, H. Jinnai, T.P. Russell, Macromolecules 42, 9082 (2009).CrossRefADSGoogle Scholar
  23. 23.
    M. Ma, E.L. Thomas, G.C. Rutledge, B. Yu, B. Li, Q. Jin, D. Ding, A.C. Shi, Macromolecules 43, 3061 (2010).CrossRefADSGoogle Scholar
  24. 24.
    B. Collin, D. Chatenay, G. Coulon, D. Ausserre, Y. Gallot, Macromolecules 25, 1621 (1992).CrossRefADSGoogle Scholar
  25. 25.
    P. Green, R. Limary, Adv. Colloid Interface Sci. 94, 53 (2001).CrossRefGoogle Scholar
  26. 26.
    M. Maaloum, D. Auserre, D. Chatenay, G. Goulon, Y. Gallot, Phys. Rev. Lett. 68, 1575 (1992).CrossRefADSGoogle Scholar
  27. 27.
    K. Niihara, U. Matsuwaki, N. Torikai, K. Satoh, M. Kamigaito, H. Jinnai, Polym. J. 39, 1105 (2007).CrossRefGoogle Scholar
  28. 28.
    B.L. Carvalho, E.L. Thomas, Phys. Rev. Lett. 73, 3321 (1994).CrossRefADSGoogle Scholar
  29. 29.
    Y. Liu, M.H. Rafailovich, J. Sokolov, S.A. Schwarz, S. Bahal, Macromolecules 29, 899 (1996).CrossRefADSGoogle Scholar
  30. 30.
    A. Horvat, A. Knoll, G. Krausch, L. Tsarkova, K.S. Lyakhova, G.J.A. Sevink, A.V. Zvelindovsky, R. Magerle, Macromolecules 40, 6930 (2007).CrossRefADSGoogle Scholar
  31. 31.
    A.B. Croll, M.V. Massa, M.W. Matsen, K. Dalnoki-Veress, Phys. Rev. Lett. 97, 204502 (2006).CrossRefADSGoogle Scholar
  32. 32.
    J.U. Kim, M.W. Matsen, Soft Matter 5, 2889 (2009).CrossRefADSGoogle Scholar
  33. 33.
    J.D. McGraw, J. Li, D.L. Tran, A.C. Shi, K. Dalnoki-Veress, Soft Matter 6, 1258 (2010).CrossRefADSGoogle Scholar
  34. 34.
    R. Deegan, O. Bakajin, T. Dupont, G. Huber, S. Nagel, T. Witten, Nature 389, 827 (1997).CrossRefADSGoogle Scholar
  35. 35.
    F.I. Li, P.H. Leo, J.A. Barnard, J. Phys. Chem. B 112, 16497 (2008).CrossRefGoogle Scholar
  36. 36.
    F.I. Li, P.H. Leo, J.A. Barnard, J. Phys. Chem. C 112, 14266 (2008).CrossRefGoogle Scholar
  37. 37.
    H. Goldstein, Classical Mechanics, 2nd edn. (Addison-Wesley, 1980).Google Scholar
  38. 38.
    H. Yokoyama, Mater. Sci. Eng. R 53, 199 (2006).CrossRefGoogle Scholar
  39. 39.
    G.H. Fredrickson, F.S. Bates, Annu. Rev. Mater. Sci. 26, 501 (1996).CrossRefADSGoogle Scholar
  40. 40.
    T.P. Lodge, M.C. Dalvi, Phys. Rev. Lett. 75, 657 (1995).CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • J. D. McGraw
    • 1
  • I. D. W. Rowe
    • 1
  • M. W. Matsen
    • 2
  • K. Dalnoki-Veress
    • 1
  1. 1.Department of Physics & Astronomy and the Brockhouse Institute for Materials ResearchMcMaster UniversityHamiltonCanada
  2. 2.School of Mathematical and Physical SciencesUniversity of ReadingWhiteknights, ReadingUK

Personalised recommendations