Advertisement

Anisotropic elasticity in confocal studies of colloidal crystals

  • M. Schindler
  • A. C. Maggs
Regular Article

Abstract

We consider the theory of fluctuations of a colloidal solid observed in a confocal slice. For a cubic crystal we study the evolution of the projected elastic properties as a function of the anisotropy of the crystal using numerical methods based on the fast Fourier transform. In certain situations of high symmetry we find exact analytic results for the projected fluctuations.

Keywords

Dispersion Relation Fast Fourier Transform Elastic Constant Green Function Dispersion Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supplementary material

10189_2011_9656_MOESM1_ESM.zip (2 kb)
Supplementary material, approximately 1.68 KB.

References

  1. 1.
    C.A. Lemarchand, A.C. Maggs, M. Schindler, ArXiv e-prints (2011), 1103.2937.Google Scholar
  2. 2.
    K. Zahn, A. Wille, G. Maret, S. Sengupta, P. Nielaba, Phys. Rev. Lett. 90, 155506 (2003).ADSCrossRefGoogle Scholar
  3. 3.
    P. Keim, G. Maret, U. Herz, H.H. von Grünberg, Phys. Rev. Lett. 92, 215504 (2004) http://prl.aps.org/abstract/PRL/v92/i21/e215504 ADSCrossRefGoogle Scholar
  4. 4.
    K. Chen, W.G. Ellenbroek, Z. Zhang, D.T.N. Chen, P.J. Yunker, S. Henkes, C. Brito, O. Dauchot, W. van Saarloos, A.J. Liu et al., Phys. Rev. Lett. 105, 025501 (2010).ADSCrossRefGoogle Scholar
  5. 5.
    D. Kaya, N.L. Green, C.E. Maloney, M.F. Islam, Science 329, 656 (2010).ADSCrossRefGoogle Scholar
  6. 6.
    A. Ghosh, R. Mari, V. Chikkadi, P. Schall, J. Kurchan, D. Bonn, Soft Matter 6, 3082 (2010) http://dx.doi.org/10.1039/c0sm00265h ADSCrossRefGoogle Scholar
  7. 7.
    A. Ghosh, V.K. Chikkadi, P. Schall, J. Kurchan, D. Bonn, Phys. Rev. Lett. 104, 248305 (2010).ADSCrossRefGoogle Scholar
  8. 8.
    A.N. Norris, J. Acoust. Soc. Am. 119, 2114 (2006).ADSCrossRefGoogle Scholar
  9. 9.
    A.F.I. Fedorov, Theory of Elastic Waves in Crystals (Plenum Press, New York, 1968).Google Scholar
  10. 10.
    D.C. Wallace, Thermoelastic Theory of Stressed Crystals and Higher-Order Elastic Constants, Vol. 25 (Academic Press, New York and London, 1970) pp. 301--404Google Scholar
  11. 11.
    Z. Cheng, J. Zhu, W.B. Russel, P.M. Chaikin, Phys. Rev. Lett. 85, 1460 (2000).ADSCrossRefGoogle Scholar
  12. 12.
    I.C. Yeh, M.L. Berkowitz, J. Chem. Phys. 111, 3155 (1999).ADSCrossRefGoogle Scholar
  13. 13.
    L. Levrel, A.C. Maggs, J. Chem. Phys. 128, 214103 (2008) http://link.aip.org/link/?JCP/128/214103/1 ADSCrossRefGoogle Scholar
  14. 14.
    A. Morawiec, Phys. Status Solidi B 184, 313 (1994).ADSCrossRefGoogle Scholar
  15. 15.
    A. Ghosh, R. Mari, V.K. Chikkadi, P. Schall, A.C. Maggs, D. Bonn, Physica A 390, 3061 (2011) DOI:10.1016/j.physa.2011.02.051 ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Laboratoire PCTUMR Gulliver CNRS-ESPCI 7083Paris Cedex 05France

Personalised recommendations