Advertisement

Efficiency of pseudo-spectral algorithms with Anderson mixing for the SCFT of periodic block-copolymer phases

  • P. Stasiak
  • M. W. Matsen
Regular Article

Abstract

This study examines the numerical accuracy, computational cost, and memory requirements of self-consistent field theory (SCFT) calculations when the diffusion equations are solved with various pseudo-spectral methods and the mean-field equations are iterated with Anderson mixing. The different methods are tested on the triply periodic gyroid and spherical phases of a diblock-copolymer melt over a range of intermediate segregations. Anderson mixing is found to be somewhat less effective than when combined with the full-spectral method, but it nevertheless functions admirably well provided that a large number of histories is used. Of the different pseudo-spectral algorithms, the 4th-order one of Ranjan, Qin and Morse performs best, although not quite as efficiently as the full-spectral method.

References

  1. 1.
    M.W. Matsen, J. Phys.: Condens. Matter 14, R21 (2002)ADSCrossRefGoogle Scholar
  2. 2.
    G.H. Fredrickson, The Equilibrium Theory of Inhomogeneous Polymers (Oxford University Press, New York, 2006)Google Scholar
  3. 3.
    M.W. Matsen, in Soft Matter, Vol. 1: Polymer Melts and Mixtures, edited by G. Gompper, M. Schick (Wiley-VCH, Weinheim, 2006)Google Scholar
  4. 4.
    E. Helfand, J. Chem. Phys. 62, 737 (1975)CrossRefGoogle Scholar
  5. 5.
    M.W. Matsen, M. Schick, Phys. Rev. Lett. 72, 2660 (1994)ADSCrossRefGoogle Scholar
  6. 6.
    K.O. Rasmussen, G. Kalosakas, J. Polym. Sci., Part B 40, 1777 (2002)CrossRefGoogle Scholar
  7. 7.
    E.W. Cochran, C.J. Garcia-Cervera, G.H. Fredrickson, Macromolecules 39, 2449 (2006)ADSCrossRefGoogle Scholar
  8. 8.
    A. Ranjan, J. Qin, D.C. Morse, Macromolecules 41, 942 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    M.W. Matsen, F.S. Bates, Macromolecules 29, 1091 (1996)ADSCrossRefGoogle Scholar
  10. 10.
    M.W. Matsen, Eur. Phys. J. E 30, 361 (2009)CrossRefGoogle Scholar
  11. 11.
    H.D. Ceniceros, G.H. Fredrickson, Multiscale Model. Simul. 2, 452 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    D.G. Anderson, J. Assoc. Comput. Mach. 12, 547 (1965)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    R.B. Thompson, K.O. Rasmussen, T. Lookman, J. Chem. Phys. 120, 31 (2004)ADSCrossRefGoogle Scholar
  14. 14.
    R.B. Thompson, Phys. Rev. E 74, 041501 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    J.U. Kim, M.W. Matsen, Soft Matter 5, 2889 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    K. Jiang, Y. Huang, P. Zhang, J. Comput. Phys. 229, 7796 (2010)ADSzbMATHCrossRefGoogle Scholar
  17. 17.
    E.W. Cochran, C.J. Garcia-Cervera, G.H. Fredrickson, Macromolecules 39, 4264 (2006)ADSCrossRefGoogle Scholar
  18. 18.
    V. Eyert, J. Comput. Phys. 124, 271 (1996)MathSciNetADSzbMATHCrossRefGoogle Scholar
  19. 19.
    F. Schmid, Phys. Rev. E 55, 5774 (1997)ADSCrossRefGoogle Scholar
  20. 20.
    Simple mixing equates to Anderson mixing without any histories (i.e., $n_r=0$), which requires the mixing parameter to be relatively small (e.g., $\lambda \approx 0.1$)Google Scholar
  21. 21.
    M. Frigo, S.G. Johnson, The Design and Implementation of FFTW3, Proc. IEEE 93, 216 (2005). The FFT subroutine, version 3.2.2, was obtained from www.fftw.org
  22. 22.
    M.W. Matsen, Phys. Rev. Lett. 99, 148304 (2007)ADSCrossRefGoogle Scholar
  23. 23.
    B. Vorselaars, J.U. Kim, T.L. Chantawansri, G.H. Fredrickson, M.W. Matsen, Soft Matter 7, 5128 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    E.W. Cochran, private communicationGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • P. Stasiak
    • 1
  • M. W. Matsen
    • 1
  1. 1.School of Mathematical and Physical SciencesUniversity of ReadingWhiteknights, ReadingUK

Personalised recommendations