Yield stresses and flow curves in metallic glass formers and granular systems

  • Th. VoigtmannEmail author
Regular Article
Part of the following topical collections:
  1. Topical Issue on the Physics of Glasses


We discuss the concept of a glass transition line in the temperature-shear-stress plane in the context of recent simulation data for a metallic melt and dense-packed granular systems. Analyzing these data within a schematic model of the mode-coupling theory for dense glass formers under shear, values for the critical dynamic yield stress (the stress resulting in the limit of arbitrarily slow shear, at the glass transition) are estimated. We discuss two possible scenarios, that of a continuous rise in the dynamic yield stress at the transition, and that of a discontinuous transition, and discuss the data range that needs to be covered to decide between the two cases. A connection is made to the two commonly drawn versions of the jamming diagram, one convex and one concave regarding to the shape of the solid region.


Shear Rate Metallic Glass Schematic Model Colloidal Suspension Granular System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    R.G. Larson, The Structure and Rheology of Complex Fluids (Oxford University Press, 1998).Google Scholar
  2. 2.
    P. Sollich, F. Lequeux, P. Hébraud, M.E. Cates, Phys. Rev. Lett. 78, 2020 (1997).ADSCrossRefGoogle Scholar
  3. 3.
    M. Fuchs, M.E. Cates, Phys. Rev. Lett. 89, 248304 (2002).ADSCrossRefGoogle Scholar
  4. 4.
    P. Olsson, S. Teitel, Phys. Rev. Lett. 99, 178001 (2007).ADSCrossRefGoogle Scholar
  5. 5.
    P. Olsson, S. Teitel, Phys. Rev. E 83, 030302(R) (2011).ADSCrossRefGoogle Scholar
  6. 6.
    P. Guan, M. Chen, T. Egami, Phys. Rev. Lett. 104, 205701 (2010).ADSCrossRefGoogle Scholar
  7. 7.
    M. Fuchs, M. Ballauff, J. Chem. Phys. 122, 094707 (2005).ADSCrossRefGoogle Scholar
  8. 8.
    J.J. Crassous, M. Siebenbürger, M. Ballauff, M. Drechsler, O. Henrich, M. Fuchs, J. Chem. Phys. 125, 204906 (2006).ADSCrossRefGoogle Scholar
  9. 9.
    J.J. Crassous, M. Siebenbürger, M. Ballauff, M. Drechsler, D. Hajnal, O. Henrich, M. Fuchs, J. Chem. Phys. 128, 204902 (2008).ADSCrossRefGoogle Scholar
  10. 10.
    M. Siebenbürger, M. Fuchs, H. Winter, M. Ballauff, J. Rheol. 53, 707 (2009).ADSCrossRefGoogle Scholar
  11. 11.
    T.K. Haxton, A.J. Liu, Phys. Rev. Lett. 99, 195701 (2007).ADSCrossRefGoogle Scholar
  12. 12.
    A.J. Liu, S.R. Nagel, Nature 396, 21 (1998).ADSCrossRefGoogle Scholar
  13. 13.
    C.S. O’Hern, L.E. Silbert, A.J. Liu, S.R. Nagel, Phys. Rev. E 68, 011306 (2003).ADSCrossRefGoogle Scholar
  14. 14.
    J.M. Brader, Th. Voigtmann, M. Fuchs, R.G. Larson, M.E. Cates, Proc. Natl. Acad. Sci. U.S.A. 106, 15186 (2009).ADSCrossRefGoogle Scholar
  15. 15.
    M. Fuchs, M.E. Cates, J. Rheol. 53, 957 (2009).ADSCrossRefGoogle Scholar
  16. 16.
    J.M. Brader, Th. Voigtmann, M.E. Cates, M. Fuchs, Phys. Rev. Lett. 98, 058301 (2007).ADSCrossRefGoogle Scholar
  17. 17.
    J.M. Brader, M.E. Cates, M. Fuchs, Phys. Rev. Lett. 101, 138301 (2008).ADSCrossRefGoogle Scholar
  18. 18.
    D.J. Evans, G.P. Morriss, Statistical Mechanics of Nonequilibrium Liquids, 2nd edn. (Cambridge University Press, 2008).Google Scholar
  19. 19.
    S.H. Chong, B. Kim, Phys. Rev. E 79, 021203 (2009).MathSciNetADSCrossRefGoogle Scholar
  20. 20.
    F. Varnik, O. Henrich, Phys. Rev. B 73, 174209 (2006).ADSCrossRefGoogle Scholar
  21. 21.
    J. Zausch, J. Horbach, M. Laurati, S. Egelhaaf, J.M. Brader, Th. Voigtmann, M. Fuchs, J. Phys.: Condens. Matter 20, 404210 (2008).CrossRefGoogle Scholar
  22. 22.
    W. Götze, Complex Dynamics of Glass-Forming Liquids (Oxford University Press, 2009).Google Scholar
  23. 23.
    O. Henrich, F. Varnik, M. Fuchs, J. Phys.: Condens. Matter 17, S3625 (2005).ADSCrossRefGoogle Scholar
  24. 24.
    D. Hajnal, M. Fuchs, Eur. Phys. J. E 28, 125 (2009).CrossRefGoogle Scholar
  25. 25.
    D.B. Miracle, D.V. Louzguine-Luzgin, L.V. Louzguina-Luzgina, A. Inoue, Int. Mater. Rev. 55, 218 (2010).CrossRefGoogle Scholar
  26. 26.
    O. Henrich, F. Weysser, M.E. Cates, M. Fuchs, Philos. Trans. R. Soc. A 367, 5033 (2009).ADSzbMATHCrossRefGoogle Scholar
  27. 27.
    J. Chattoraj, C. Caroli, A. Lemaître, Phys. Rev. Lett. 105, 266001 (2010).ADSCrossRefGoogle Scholar
  28. 28.
    L. Berthier, J.L. Barrat, J. Chem. Phys. 116, 6228 (2002).ADSCrossRefGoogle Scholar
  29. 29.
    L. Berthier, J.L. Barrat, J. Kurchan, Phys. Rev. E 61, 5464 (2000).ADSCrossRefGoogle Scholar
  30. 30.
    R. Besseling, E.R. Weeks, A.B. Schofield, W.C.K. Poon, Phys. Rev. Lett. 99, 028301 (2007).ADSCrossRefGoogle Scholar
  31. 31.
    M. Fuchs, M.E. Cates, Faraday Discuss. 123, 267 (2003).ADSCrossRefGoogle Scholar
  32. 32.
    F. Varnik, L. Bocquet, J.L. Barrat, J. Chem. Phys. 120, 2788 (2004).ADSCrossRefGoogle Scholar
  33. 33.
    C.A. Schuh, T.C. Hufnagel, U. Ramamurty, Acta Mater. 55, 4067 (2007).CrossRefGoogle Scholar
  34. 34.
    Y. Shi, M.B. Katz, H. Li, M.L. Falk, Phys. Rev. Lett. 98, 185505 (2007).ADSCrossRefGoogle Scholar
  35. 35.
    R. Besseling, L. Isa, P. Ballesta, G. Petekidis, M.E. Cates, W.C.K. Poon, Phys. Rev. Lett. 105, 268301 (2010).ADSCrossRefGoogle Scholar
  36. 36.
    D. Fenistein, M. van Hecke, Nature 425, 256 (2003).ADSCrossRefGoogle Scholar
  37. 37.
    T. Divoux, D. Tamarii, C. Barentin, S. Manneville, Phys. Rev. Lett. 104, 208301 (2010).ADSCrossRefGoogle Scholar
  38. 38.
    M.L. Manning, J.S. Langer, J.M. Carlson, Phys. Rev. E 76, 056106 (2007).ADSCrossRefGoogle Scholar
  39. 39.
    S.M. Fielding, M.E. Cates, P. Sollich, Soft Matter 5, 2378 (2009).ADSCrossRefGoogle Scholar
  40. 40.
    G. Ovarlez, S. Rodts, X. Chateau, P. Coussot, Rheol. Acta 48, 831 (2009).CrossRefGoogle Scholar
  41. 41.
    M. Fuchs, M. Ballauff, Coll. Surf. A 270--271, 232 (2005).CrossRefGoogle Scholar
  42. 42.
    F.A. Lindemann, Phys. Z. 11, 609 (1910).zbMATHGoogle Scholar
  43. 43.
    C. Mayer, E. Zaccarelli, E. Stiakakis, C.N. Likos, F. Sciortino, A. Munam, M. Gauthier, N. Hadjichristidis, H. Iatrou, P. Tartaglia et al., Nat. Mater. 7, 780 (2008).ADSCrossRefGoogle Scholar
  44. 44.
    K.N. Pham, G. Petekidis, D. Vlassopoulos, S.U. Egelhaaf, P.N. Pusey, W.C.K. Poon, Europhys. Lett. 75, 624 (2006).ADSCrossRefGoogle Scholar
  45. 45.
    J.L. Barrat, L. Berthier, Phys. Rev. E 63, 012503 (2000).ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Institut für Materialphysik im WeltraumDeutsches Zentrum für Luft- und Raumfahrt (DLR)KölnGermany
  2. 2.Fachbereich PhysikUniversität KonstanzKonstanzGermany
  3. 3.ZukunftskollegUniversität KonstanzKonstanzGermany

Personalised recommendations