Advertisement

Positron annihilation response and broadband dielectric spectroscopy: Salol

  • J. Bartoš
  • M. Iskrová
  • M. Köhler
  • R. Wehn
  • O. Šauša
  • P. Lunkenheimer
  • J. Krištiak
  • A. Loidl
Regular Article
Part of the following topical collections:
  1. Topical Issue on the Physics of Glasses

Abstract

A phenomenological analysis of the ortho-positronium (o-Ps) annihilation from positron annihilation lifetime spectroscopy (PALS) and the dynamics from broadband dielectric spectroscopy (BDS) are reported on a small molecular glass former of intermediate H-bonding and fragility: salol. The dielectric spectra extend over a very broad frequency range of about 2 × 10−2−3.5 × 1011 Hz, providing information on the α-relaxation, the secondary relaxation giving rise to the excess wing, and the shallow high-frequency minimum in the micro- to milli-meter wave range. A number of empirical correlations between the o-Ps lifetime, τ 3(T), and the various spectral and relaxation features have been observed. Thus, the phenomenological evaluation of the τ 3(T) dependence of the PALS response of the amorphous sample reveals three characteristic PALS temperatures: T g PALS , T b1 L = 1.15T g PALS and T b2 L = 1.25T g PALS , which are discussed in relation to similar findings for some typical small molecular vdW- and H-bonded glass formers. A slighter change of the slope at T b1 L appears to be related to the transition from excess wing to the primary α-process-dominated behavior, with the secondary process dominating in the deeply supercooled liquid state below T b1 L . The high-temperature plateau effect in the τ 3(T) plot occurs at T b2 L and agrees with the characteristic Stickel temperature, T B ST , marking a qualitative change of the primary α process, but it does not follow the relation T b2 L < T α [τ 3(T b2) < τ α ]. Both effects at T b1 L and T b2 L correlate with two crossovers in the spectral shape and related non-exponentiality parameter of the structural relaxation, β KWW. Finally, the application of the two-order parameter (TOP) model to the structural relaxation as represented by the primary α relaxation times from BDS leads to the characteristic TOP temperature, T m c , close to T b1 from PALS. Within this model the phenomenological interpretation is offered based on changes in the probability of occurrence of solid-like and liquid-like domains to explain the dynamic as well as PALS responses. In summary, all the empirical correlations support further very close connections between the PALS response and the dielectric relaxation behavior in small molecule glass formers.

Keywords

Structural Relaxation Propylene Carbonate Propylene Carbonate Positron Annihilation Lifetime Spectroscopy Secondary Relaxation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    M.D. Ediger, C.A. Angell, S.R. Nagel, J. Phys. Chem. B 100, 13200 (1996)CrossRefGoogle Scholar
  2. 2.
    C.A. Angell, K.L. Ngai, G.B. McKenna, P.F. McMillan, S.W. Martin, J. Appl. Phys. 88, 3113 (2000)ADSCrossRefGoogle Scholar
  3. 3.
    P.G. DeBenedetti, F.H. Stillinger, Nature 410, 259 (2001)ADSCrossRefGoogle Scholar
  4. 4.
    For review: a series of special issues from International Discussion Meeting on Relaxations in Complex Systems in J. Non-Cryst. Solids 131-133 (1991)Google Scholar
  5. 5.
    D.C. Champeney, R.B.N. Joarder, J.C. Dore, Mol. Phys. 58, 337 (1986)ADSCrossRefGoogle Scholar
  6. 6.
    R.L. Leheny, N. Menon, S.R. Nagel, D.L. Price, K. Suzuya, P. Thiyagarajan, J. Chem. Phys. 105, 7783 (1996)ADSCrossRefGoogle Scholar
  7. 7.
    B. Frick, D. Richter, C. Ritter, Europhys. Lett. 9, 557 (1989)ADSCrossRefGoogle Scholar
  8. 8.
    E.W. Fischer, Physica A 201, 183 (1993)ADSCrossRefGoogle Scholar
  9. 9.
    A.P. Sokolov, Endeavour 21, 109 (1997)CrossRefGoogle Scholar
  10. 10.
    K.L. Ngai, J. Non-Cryst. Solids 275, 7 (2000)ADSCrossRefGoogle Scholar
  11. 11.
    M. Beiner et al., J. Non-Cryst. Solids 279, 126 (2001)ADSCrossRefGoogle Scholar
  12. 12.
    R. Böhmer, Curr. Opin. Solid State Mater. Sci. 3, 378 (1998)ADSCrossRefGoogle Scholar
  13. 13.
    H. Silescu, J. Non-Cryst. Solids 243, 81 (1999)ADSCrossRefGoogle Scholar
  14. 14.
    M.D. Ediger, Annu. Rev. Phys. Chem. 51, 99 (2000)ADSCrossRefGoogle Scholar
  15. 15.
    R. Richert, J. Phys.: Condens. Matter 14, R703 (2002)ADSCrossRefGoogle Scholar
  16. 16.
    A.J. Barlow, J. Lamb, A.J. Matheson, Proc. R. Soc. London, Ser. A 292, 322 (1966)ADSCrossRefGoogle Scholar
  17. 17.
    D.J. Plazek, J.H. Magill, J. Chem. Phys. 45, 3038 (1966)ADSCrossRefGoogle Scholar
  18. 18.
    K.L. Ngai, J.H. Magill, D.J. Plazek, J. Chem. Phys. 112, 1887 (2000)ADSCrossRefGoogle Scholar
  19. 19.
    A. Schönhals, F. Kremer, A. Hofmann, E.W. Fischer, E. Schlosser, Phys. Rev. Lett. 70, 3459 (1993)ADSCrossRefGoogle Scholar
  20. 20.
    F. Stickel, E.W. Fischer, R. Richert, J. Chem. Phys. 102, 6251 (1995)ADSCrossRefGoogle Scholar
  21. 21.
    F. Stickel, E.W. Fischer, R. Richert, J. Chem. Phys. 104, 2043 (1996)ADSCrossRefGoogle Scholar
  22. 22.
    C. Hansen, F. Stickel, R. Richert, E.W. Fischer, J. Chem. Phys. 108, 6408 (1998)ADSCrossRefGoogle Scholar
  23. 23.
    A. Schönhals, Europhys. Lett. 56, 815 (2001)ADSCrossRefGoogle Scholar
  24. 24.
    C. Leon, K.L. Ngai, J. Phys. Chem. B 103, 4045 (1999)CrossRefGoogle Scholar
  25. 25.
    K.L. Ngai, C.M. Roland, Polymer 43, 567 (2002)CrossRefGoogle Scholar
  26. 26.
    A. Alegria, J. Colmenero, P.O. Mari, I.A. Campbell, Phys. Rev. E 59, 6888 (1999)ADSCrossRefGoogle Scholar
  27. 27.
    R. Casalini, M. Paluch, C.M. Roland, J. Chem. Phys. 118, 5701 (2003)ADSCrossRefGoogle Scholar
  28. 28.
    R. Casalini, M. Roland, Phys. Rev. Lett. 92, 245702 (2004)ADSCrossRefGoogle Scholar
  29. 29.
    R. Casalini, C.M. Roland, Phys. Rev. B 71, 014210 (2005)ADSCrossRefGoogle Scholar
  30. 30.
    C.M. Roland, R. Casalini, J. Non-Cryst. Solids 351, 2581 (2005)ADSCrossRefGoogle Scholar
  31. 31.
    M. Roland, Soft Matter 4, 2314 (2008)ADSCrossRefGoogle Scholar
  32. 32.
    M.H. Cohen, G.S. Grest, Phys. Rev. B 20, 1077 (1979)ADSCrossRefGoogle Scholar
  33. 33.
    G.S. Grest, M.H. Cohen, Phys. Rev. B 28, 4113 (1980)ADSCrossRefGoogle Scholar
  34. 34.
    M.H. Cohen, G. Grest, Adv. Chem. Phys. 48, 455 (1981)CrossRefGoogle Scholar
  35. 35.
    M. Paluch, R. Casalini, C.M. Roland, Phys. Rev. E 67, 021508 (2003)ADSCrossRefGoogle Scholar
  36. 36.
    K.L. Ngai, Comm. Solid State Phys. 9, 141 (1979)Google Scholar
  37. 37.
    K.L. Ngai, J. Non-Cryst. Solids 9, 1107 (2003)Google Scholar
  38. 38.
    R. Casalini, K.L. Ngai, C.M. Roland, Phys. Rev. E 68, 014201 (2003)ADSGoogle Scholar
  39. 39.
    D. Kivelson, S.A. Kivelson, X.L. Zhao, Z. Nussinov, G. Tarjus, Physica A 219, 27 (1995)ADSCrossRefGoogle Scholar
  40. 40.
    D. Kivelson, G. Tarjus, X.L. Zhao, S.A. Kivelson, Phys. Rev. E 53, 751 (1996)ADSCrossRefGoogle Scholar
  41. 41.
    D. Kivelson, G. Tarjus, J. Non-Cryst. Solids 235-237, 86 (1998)ADSCrossRefGoogle Scholar
  42. 42.
    E. Eckstein, J. Qian, R. Hentschke, T. Thurn-Albert, W. Steffen, E.W. Fischer, J. Chem. Phys. 113, 4751 (2000)ADSCrossRefGoogle Scholar
  43. 43.
    E. Fischer, A. Sakai, in Heterophase Fluctuations in Super-cooled Liquids and Polymers, AIP Conf. Proc. No. 469, edited by M. Tokuyama, I. Oppenheim (1999) p. 325Google Scholar
  44. 44.
    E.W. Fischer, A. Bakai, A. Patkowski, W. Steffen, L. Reinhardt, J. Non-Cryst. Solids 307--310, 584 (2002)ADSCrossRefGoogle Scholar
  45. 45.
    H. Tanaka, J. Phys.: Condens. Matter 10, L207 (1998)ADSCrossRefGoogle Scholar
  46. 46.
    H. Tanaka, J. Phys.: Condens. Matter 11, L159 (1999)ADSCrossRefGoogle Scholar
  47. 47.
    H. Tanaka, J. Chem. Phys. 111, 3163 (1999)ADSCrossRefGoogle Scholar
  48. 48.
    H. Tanaka, J. Non-Cryst. Solids 351, 3371 (2005)ADSCrossRefGoogle Scholar
  49. 49.
    A. Bondi, Physical Properties of Crystals, Liquids and Glasses (Wiley, New York, 1968)Google Scholar
  50. 50.
    J.D. Ferry, Viscoelastic Properties of Polymers, 3rd ed. (Wiley, New York, 1980)Google Scholar
  51. 51.
    J. Crank, G. Park (Editors), Diffusion in Polymers (Academic Press, New York, 1968)Google Scholar
  52. 52.
    G. Dlubek, in: Encyclopedia of Polymer Science and Technology (Wiley & Sons, 2008)Google Scholar
  53. 53.
    Y.C. Jean, P.E. Malton, D.M. Schraeder (Editors), Principles and Application of Positron and Positronium Chemistry (World Scientific, Singapore, 2003)Google Scholar
  54. 54.
    J. Bartoš, in: Encyclopedia of Analytical Chemistry, edited by R.A. Meyers (Wiley & Sons, Chichester, 2000) p. 7968Google Scholar
  55. 55.
    S. Tao, J. Chem. Phys. 56, 5499 (1972)ADSCrossRefGoogle Scholar
  56. 56.
    M. Eldrup, D. Ligthbody, J.N. Sherwood, Chem. Phys. 63, 51 (1981)CrossRefGoogle Scholar
  57. 57.
    H. Nakanishi, Y.C. Jean, S.J. Wang, in Positron Annihilation Studies of Fluids, edited by S.C. Sharma (World Scientific, Singapore, 1988), p. 292Google Scholar
  58. 58.
    H.S. Landes, S. Berko, A.J. Zuchelli, Phys. Rev. 103, 828 (1956)ADSCrossRefGoogle Scholar
  59. 59.
    W. Brandt, S. Berko, W.W. Walker, Phys. Rev. 120, 1289 (1960)ADSCrossRefGoogle Scholar
  60. 60.
    E.L.E. Kluth, H. Clarke, B.G. Hogg, J. Chem. Phys. 40, 3180 (1964)ADSCrossRefGoogle Scholar
  61. 61.
    W. Brandt, I. Spirn, Phys. Rev. 142, 231 (1966)ADSCrossRefGoogle Scholar
  62. 62.
    R.A. Pethrick, F.M. Jacobsen, O.E. Mogensen M. Eldrup, J. Chem. Soc. Faraday Trans. II 78, 287 (1982)Google Scholar
  63. 63.
    Y.C. Jean, T.C. Sandreczki, D.P. Ames, J. Polym. Sci. B, Polym. Phys. 24, 1247 (1986)ADSCrossRefGoogle Scholar
  64. 64.
    J. Krištiak, O. Sauša, P. Bandžuch, .J. Bartoš, J. Rad. Nucl. Chem. 210, 563 (1996)CrossRefGoogle Scholar
  65. 65.
    J. Bartoš, O. Sauša, P. Bandžuch, J. Zrubcová, J. Krištiak, J. Non-Cryst. Solids 307--310, 417 (2002)ADSCrossRefGoogle Scholar
  66. 66.
    J. Bartoš, O. Sauša, J. Krištiak, T. Blochowicz, E. Rössler, J. Phys.: Condens. Matter 13, 11 473 (2001)CrossRefGoogle Scholar
  67. 67.
    D. Kilburn, J. Wawryszczuk, G. Dlubek, J. Pionteck, R. Hässler, M.A. Alam, Macromol. Chem. Phys. 207, 721 (2006)CrossRefGoogle Scholar
  68. 68.
    J. Wu, G. Huang, Q. Pan, L. Qu, Y. Zhu, B. Wang, Appl. Phys. Lett. 89, 121904 (2006)ADSCrossRefGoogle Scholar
  69. 69.
    W. Salgueiro, A. Somoza, G. Consolati, F. Quasso, A. Marzocca, Phys. Status Solidi C4 10, 3771 (2007)CrossRefGoogle Scholar
  70. 70.
    R.A. Pethrick, F.M. Jacobsen, O.E. Mogensen, M. Eldrup, J. Chem. Soc. Faraday Trans. II 76, 225 (1980)CrossRefGoogle Scholar
  71. 71.
    J.R. Stevens, S.H. Chung, P. Horoyski, K.R. Jeffrey, J. Non-Cryst. Solids 172-174, 1207 (1994)ADSCrossRefGoogle Scholar
  72. 72.
    K.L. Ngai, L.R. Bao, A.F. Yee, C.L. Soles, Phys. Rev. Lett. 87, 215901 (2001)ADSCrossRefGoogle Scholar
  73. 73.
    J. Bartoš, V. Majernik, M. Iskrová, O. Sauša, J. Krištiak, P. Lunkenheimer, A. Loidl, J. Non-Cryst. Solids 356, 794 (2010)ADSCrossRefGoogle Scholar
  74. 74.
    G. Dlubek, M.Q. Shaik, K. Raetzke, M. Paluch, F. Faupel, J. Phys.: Condens. Matter 22, 235104 (2010)ADSCrossRefGoogle Scholar
  75. 75.
    G. Dlubek, M.Q. Shaik, R. Krause-Rehberg, M. Paluch, J. Chem. Phys. 126, 024906 (2007)ADSCrossRefGoogle Scholar
  76. 76.
    P. Lunkenheimer, U. Schneider, R. Brand, A. Loidl, Contemp. Phys. 41, 15 (2000)ADSCrossRefGoogle Scholar
  77. 77.
    F. Kremer, A. Schönhals (Editors), Broadband Dielectric Spectroscopy (Springer, Berlin, 2002)Google Scholar
  78. 78.
    J. Bartoš, D. Račko, O. Šauša, J. Krištiak, Soft Matter under Exogenic Impacts. Fundamentals and Emerging Technologies, ARW NATO Ser., edited by S.J. Rzoska, V. Mazur (Springer-Verlag, Berlin, 2007) p. 113Google Scholar
  79. 79.
    J.T. Bendler, J.J. Fontanella, M. Shlesinger, J. Bartoš, O. Sauša, J. Krištiak, Phys. Rev. E 71, 031508 (2005)ADSCrossRefGoogle Scholar
  80. 80.
    J. Bartoš, A. Alegría, O. Sauša, M. Tyagi, D. Gómez, J. Krištiak, J. Colmenero, Phys. Rev. E 76, 031503 (2007)ADSCrossRefGoogle Scholar
  81. 81.
    J. Bartoš, G. Schwartz, O. Sauša, A. Alegría, J. Krištiak, J. Colmenero, J. Non-Cryst. Solids 356, 782 (2010)ADSCrossRefGoogle Scholar
  82. 82.
    S. Pawlus, J. Bartoš, O. Sauša, J. Krištiak, M. Paluch, J. Chem. Phys. 124, 104505 (2006)ADSCrossRefGoogle Scholar
  83. 83.
    J. Bartoš, O. Sauša, D. Račko, J. Krištiak, J.J. Fontanella, J. Non-Cryst. Solids 351, 2599 (2005)ADSCrossRefGoogle Scholar
  84. 84.
    J. Bartoš, O. Sauša, M. Köhler, H. Svajdlenková, P. Lunkenheimer, J. Krištiak, A. Loidl, J. Non-Cryst. Solids 357, 376 (2011)ADSCrossRefGoogle Scholar
  85. 85.
    R. Richert, C.A. Angell, J. Chem. Phys. 108, 9016 (1998)ADSCrossRefGoogle Scholar
  86. 86.
    R. Böhmer, K.L. Ngai, C.A. Angell, D.J. Plazek, J. Chem. Phys. 99, 4201 (1993)ADSCrossRefGoogle Scholar
  87. 87.
    J.H. Bilgram,U. During, M. Wachter, P. Seiler, J. Crystal Growth 57, 1 (1982)ADSCrossRefGoogle Scholar
  88. 88.
    R.B. Hammond, M.J. Jones, K.J. Roberts, H. Kutzke, H. Klapper, Z. Kristallogr. 217, 484 (2002)CrossRefGoogle Scholar
  89. 89.
    J. Baran, N.A. Davidova, Phys. Rev. E 81, 031503 (2010)ADSCrossRefGoogle Scholar
  90. 90.
    J.J. Moura Ramos, N.T. Correiaa, H.P. Diogob, Phys. Chem. Chem. Phys. 6, 793 (2004)CrossRefGoogle Scholar
  91. 91.
    W.T. Laughlin, D.R. Uhlmann, J. Phys. Chem. 76, 2317 (1072)CrossRefGoogle Scholar
  92. 92.
    M. Cukierman, J.W. Lane, D.R. Uhlmann, J. Chem. Phys. 59, 3639 (1973)ADSCrossRefGoogle Scholar
  93. 93.
    G.D. Enright, B.P. Stoicheff, J. Chem. Phys. 64, 3658 (1976)ADSCrossRefGoogle Scholar
  94. 94.
    P.K. Dixon, Phys. Rev. E 42, 8179 (1990)ADSGoogle Scholar
  95. 95.
    P.K. Dixon, L. Wu, S.R. Nagel, B.D. Williams, J.P. Carini, Phys. Rev. Lett. 65, 1108 (1990)ADSCrossRefGoogle Scholar
  96. 96.
    A. Hofmann, F. Kremer, E.W. Fischer, A. Schönhals, in Disorder Effects on Relaxational Processes, edited by R. Richert, A. Blumen (Springer, Berlin, 1994) p. 309Google Scholar
  97. 97.
    G. Li, W.M. Du, A. Sakai, H.Z. Cummins, Phys. Rev. A 46, 3343 (1992)ADSCrossRefGoogle Scholar
  98. 98.
    C. Dreyfus, M.J. Lebon, H.Z. Cummins, J. Toulouse, B. Bonello, R.M. Pick, Phys. Rev. Lett. 69, 366 (1992)ADSCrossRefGoogle Scholar
  99. 99.
    L. Andreozzi, M. Bannoli, M. Faeti, M. Giordano, J. Non-Cryst. Solids 303, 262 (2002)ADSCrossRefGoogle Scholar
  100. 100.
    G. Dlubek, M.Q. Shaikh, K. Raetzke, F. Faupel, J. Pionteck, M. Paluch, J. Chem. Phys. 130, 144906 (2009)ADSCrossRefGoogle Scholar
  101. 101.
    J. Krištiak, J. Bartoš, K. Krištiaková, P. Bandžuch, Phys. Rev. B 49, 6601 (1994)ADSCrossRefGoogle Scholar
  102. 102.
    P. Kirkegaard, M. Eldrup, O.E. Mogensen, N.J. Pedersen, Comput. Phys. Commun. 23, 307 (1989)ADSCrossRefGoogle Scholar
  103. 103.
    U. Schneider, P. Lunkenheimer, A. Pimenov, R. Brand, A. Loidl, Ferroelectrics 249, 89 (2001)CrossRefGoogle Scholar
  104. 104.
    U. Schneider, P. Lunkenheimer, R. Brand, A. Loidl, Phys. Rev. E 59, 6924 (1999)ADSCrossRefGoogle Scholar
  105. 105.
    R. Böhmer, M. Maglione, P. Lunkenheimer, A. Loidl, J. Appl. Phys. 65, 901 (1989)ADSCrossRefGoogle Scholar
  106. 106.
    A.A. Volkov, Yu.G. Goncharov, G.V. Kozlov, S.P. Lebedev, A.M. Prokhorov, Infrared Phys. 25, 369 (1985)ADSCrossRefGoogle Scholar
  107. 107.
    A.A. Volkov, G.V. Kozlov, S.P. Lebedev, A.M. Prokhorov, Infrared Phys. 29, 747 (1989)ADSCrossRefGoogle Scholar
  108. 108.
    R. Wehn, Dielektrische Spektroskopie zur Untersuchung der Glasdynamik im Nichtgleichgewicht (Cuivillier, Göttingen, 2010)Google Scholar
  109. 109.
    M. Köhler, Relaxation, Rattling and Decoupling (Mensch und Buch, Berlin, 2010)Google Scholar
  110. 110.
    A. Kudlik, S. Benkhof, T. Blochowicz, T. Tschirwitz, E. Rössler, J. Mol. Struct. 479, 201 (1999)ADSCrossRefGoogle Scholar
  111. 111.
    U. Schneider, R. Brand, P. Lunkenheimer, A. Loidl, Phys. Rev. Lett. 84, 5560 (2000)ADSCrossRefGoogle Scholar
  112. 112.
    P. Lunkenheimer, R. Wehn, Th. Riegger, A. Loidl, J. Non-Cryst. Solids 307-310, 336 (2002)ADSCrossRefGoogle Scholar
  113. 113.
    A. Döß, M. Paluch, H. Sillescu, G. Hinze, Phys. Rev. Lett. 88, 095701 (2002)ADSCrossRefGoogle Scholar
  114. 114.
    R. Casalini, M. Paluch, C.M. Roland, J. Phys. Chem. A 107, 2369 (2003)CrossRefGoogle Scholar
  115. 115.
    P. Lunkenheimer, A. Pimenov, M. Dressel, Yu.G. Goncharov, R. Böhmer, A. Loidl, Phys. Rev. Lett. 77, 318 (1996)ADSCrossRefGoogle Scholar
  116. 116.
    P. Lunkenheimer, A. Pimenov, A. Loidl, Phys. Rev. Lett. 78, 2995 (1997)ADSCrossRefGoogle Scholar
  117. 117.
    M. Köhler, P. Lunkenheimer, Y. Goncharov, R. Wehn, A. Loidl, J. Non-Cryst. Solids 356, 529 (2010)ADSCrossRefGoogle Scholar
  118. 118.
    S. Kastner, M. Köhler, Y. Goncharov, P. Lunkenheimer, A. Loidl, J. Non-Cryst. Solids 357, 510 (2011)ADSCrossRefGoogle Scholar
  119. 119.
    S. Havriliak, S.N. Negami, J. Polym. Sci. C 14, 99 (1966)CrossRefGoogle Scholar
  120. 120.
    K.S. Cole, R.H. Cole, J. Chem. Phys. 9, 341 (1941)ADSCrossRefGoogle Scholar
  121. 121.
    R. Casalini, U. Mohanty, C.M. Roland, J. Chem. Phys. 125, 014505 (2006)ADSCrossRefGoogle Scholar
  122. 122.
    P. Lunkenheimer, S. Kastner, M. Köhler, A. Loidl, Phys. Rev. E 81, 051504 (2010)ADSCrossRefGoogle Scholar
  123. 123.
    G. Dlubek, M.Q. Shaikh, K. Raetzke, F. Faupel, M. Paluch, Phys. Rev. E 78, 051505 (2008)ADSCrossRefGoogle Scholar
  124. 124.
    F. Alvarez, A. Alegria, J. Colmenero, Phys. Rev. B 44, 7306 (1991)ADSCrossRefGoogle Scholar
  125. 125.
    S. Bhattacharyya, B. Bagchi, P. Wolynes, Proc. Natl. Acad. Sci. U.S.A. 105, 16077 (2008)ADSCrossRefGoogle Scholar
  126. 126.
    K. Trachenko, C.M. Roland, R. Casalini, J. Phys. Chem. B 112, 5111 (2008)CrossRefGoogle Scholar
  127. 127.
    L.M. Wang, R. Richert, Phys. Rev. B 76, 064201 (2007)ADSCrossRefGoogle Scholar
  128. 128.
    I. Avramov, J. Chem. Phys. 95, 4439 (1991)ADSCrossRefGoogle Scholar
  129. 129.
    J.C. Mauro, Y. Yue, A.J. Ellison, P.K. Gupta, D.C. Allan, Proc. Natl. Acad. Sci. U.S.A. 106, 19780 (2009)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • J. Bartoš
    • 1
  • M. Iskrová
    • 2
  • M. Köhler
    • 3
  • R. Wehn
    • 3
  • O. Šauša
    • 2
  • P. Lunkenheimer
    • 3
  • J. Krištiak
    • 2
  • A. Loidl
    • 3
  1. 1.Polymer Institute of SASBratislavaSlovak Republic
  2. 2.Institute of Physics of SASBratislavaSlovak Republic
  3. 3.Experimental Physics V, Center for Electronic Correlations and MagnetismUniversity of AugsburgAugsburgGermany

Personalised recommendations