Advertisement

On the potential energy landscape of supercooled liquids and glasses

  • D. RodneyEmail author
  • T. Schrøder
Regular Article
Part of the following topical collections:
  1. Topical Issue on the Physics of Glasses

Abstract.

The activation-relaxation technique (ART), a saddle-point search method, is applied to determine the potential energy landscape around supercooled and glassy configurations of a three-dimensional binary Lennard-Jones system. We show a strong relation between the distribution of activation energies around a given glassy configuration and its history, in particular, the cooling rate used to produce the glass and whether or not the glass was plastically deformed prior to sampling. We also compare the thermally activated transitions found by ART around a supercooled configuration with the succession of transitions undergone by the same supercooled liquid during a time trajectory simulated by molecular dynamics. We find that ART is biased towards more heterogeneous transitions with higher activation energies and more broken bonds than the MD simulation.

Keywords

Activation Energy Molecular Dynamic Molecular Dynamic Simulation Inelastic Strain Break Bond 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    M.D. Ediger, C.A. Angell, S.R. Nagel, J. Chem. Phys. 100, 13200 (1996)CrossRefGoogle Scholar
  2. 2.
    P.G. Debenedetti, F.H. Stillinger, Nature 410, 259 (2001)ADSCrossRefGoogle Scholar
  3. 3.
    G. Tarjus, S.A. Kivelson, Z. Nussinov, P. Viot, J. Phys.: Condens. Matter 17, R1143 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    A. Heuer, J. Phys.: Condens. Matter 20, 373101 (2008)CrossRefGoogle Scholar
  5. 5.
    H. Tanaka, T. Kawasaki, H. Shintani, K. Watanabe, Nat. Mater. 9, 324 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    L. Berthier, G. Biroli, Rev. Mod. Phys. 83, 587 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    F.H. Stillinger, T.A. Weber, Science 225, 983 (1984)ADSCrossRefGoogle Scholar
  8. 8.
    H. Jónsson, H.C. Andersen, Phys. Rev. Lett. 60, 2295 (1988)ADSCrossRefGoogle Scholar
  9. 9.
    F.H. Stillinger, Science 267, 1935 (1995)ADSCrossRefGoogle Scholar
  10. 10.
    S. Sastry, P.G. Debenedetti, F.H. Stillinger, Nature 393, 554 (1998)ADSCrossRefGoogle Scholar
  11. 11.
    T.B. Schroder, S. Sastry, J.C. Dyre, S.C. Glotzer, J. Chem. Phys. 112, 9834 (2000)ADSCrossRefGoogle Scholar
  12. 12.
    S. Büchner, A. Heuer, Phys. Rev. Lett. 84, 2168 (2000)ADSCrossRefGoogle Scholar
  13. 13.
    B. Doliwa, A. Heuer, Phys. Rev. Lett. 91, 235501 (2003)ADSCrossRefGoogle Scholar
  14. 14.
    D.J. Wales, M.A. Miller, T.R. Walsh, Nature 394, 758 (1998)ADSCrossRefGoogle Scholar
  15. 15.
    R. Malek, N. Mousseau, Phys. Rev. E 62, 7723 (2000)ADSCrossRefGoogle Scholar
  16. 16.
    E. Cancès, F. Legoll, M.C. Marinica, K. Minoukadeh, F. Willaime, J. Chem. Phys. 130, 114711 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    D. Rodney, C.A. Schuh, Phys. Rev. B 80, 184203 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    D. Rodney, C. Schuh, Phys. Rev. Lett. 102, 235503 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    G. Wahnström, Phys. Rev. A 44, 3752 (1991)ADSCrossRefGoogle Scholar
  20. 20.
    Y. Shi, M.L. Falk, Phys. Rev. B 73, 214201 (2006)ADSCrossRefGoogle Scholar
  21. 21.
    D. Coslovich, G. Pastore, J. Chem. Phys. 127, 124504 (2007)ADSCrossRefGoogle Scholar
  22. 22.
    K. Watanabe, H. Tanaka, Phys. Rev. Lett. 100, 158002 (2008)ADSCrossRefGoogle Scholar
  23. 23.
    D. Rodney, M. Fivel, R. Dendievel, Phys. Rev. Lett. 95, 95108004 (2005)CrossRefGoogle Scholar
  24. 24.
    H. Jónsson, G. Mills, K. Jacobsen, in Classical and Quantum Dynamics in Condensed Phase Simulations, edited by B.J. Berne, G. Ciccotti, D.F. Coker (World Scientific, Singapore, 1998) p. 385Google Scholar
  25. 25.
    D. Rodney, Phys. Rev. B 76, 144108 (2007)ADSCrossRefGoogle Scholar
  26. 26.
    G. Henkelman, H. Jónsson, J. Chem. Phys. 113, 9978 (2000)ADSCrossRefGoogle Scholar
  27. 27.
    G. Henkelman, B.P. Uberuaga, H. Jónsson, J. Chem. Phys. 113, 9901 (2000)ADSCrossRefGoogle Scholar
  28. 28.
    M. Goldstein, J. Chem. Phys. 51, 3728 (1969)ADSCrossRefGoogle Scholar
  29. 29.
    F. Valiquette, N. Mousseau, Phys. Rev. B 68, 125209 (2003)ADSCrossRefGoogle Scholar
  30. 30.
    J.C. Dyre, Phys. Rev. Lett. 58, 792 (1987)ADSCrossRefGoogle Scholar
  31. 31.
    N.P. Bailey, T.B. Schrøder, J.C. Dyre, Phys. Rev. Lett. 102, 055701 (2009)ADSCrossRefGoogle Scholar
  32. 32.
    E.R. Homer, D. Rodney, C.A. Schuh, Phys. Rev. E 81, 064204 (2010)Google Scholar
  33. 33.
    H.W. Sheng, W.K. Luo, F.M. Alamgir, J.M. Bai, E. Ma, Nature 439, 419 (2006)ADSCrossRefGoogle Scholar
  34. 34.
    Y.Q. Cheng, A.J. Cao, E. Ma, Acta Mater. 57, 3253 (2009)ADSCrossRefGoogle Scholar
  35. 35.
    C.H. Rycroft, G.S. Grest, J.W. Landry, M.Z. Bazant, Phys. Rev. E 74, 021306 (2006)ADSCrossRefGoogle Scholar
  36. 36.
    U.R. Pedersen, T.B. Schrøder, J.C. Dyre, P. Harrowell, Phys. Rev. Lett. 104, 105701 (2010)ADSCrossRefGoogle Scholar
  37. 37.
    Y. Shi, M.L. Falk, Phys. Rev. Lett. 95, 095502 (2005)ADSCrossRefGoogle Scholar
  38. 38.
    M. Utz, P. Debenedetti, F.H. Stillinger, Phys. Rev. Lett. 84, 1471 (2000)ADSCrossRefGoogle Scholar
  39. 39.
    A.S. Argon, H.Y. Kuo, J. Non-Cryst. Solids 37, 241 (1980)ADSCrossRefGoogle Scholar
  40. 40.
    A.S. Argon, J. Appl. Phys. 39, 4080 (1968)ADSCrossRefGoogle Scholar
  41. 41.
    B. Doliwa, A. Heuer, Phys. Rev. E 67, 030501 (2003)ADSCrossRefGoogle Scholar
  42. 42.
    B. Doliwa, A. Heuer, Phys. Rev. E 67, 031506 (2003)ADSCrossRefGoogle Scholar
  43. 43.
    R.A. Denny, D.R. Reichman, J.P. Bouchaud, Phys. Rev. Lett. 90, 025503 (2003)ADSCrossRefGoogle Scholar
  44. 44.
    T.F. Middleton, D.J. Wales, Phys. Rev. B 64, 024205 (2001)ADSCrossRefGoogle Scholar
  45. 45.
    G.A. Appignanesi, J.A. Rodriguez Fris, R.A. Montani, W. Kob, Phys. Rev. Lett. 96, 057801 (2006)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Laboratoire Science et Ingénierie des Matériaux et ProcédésGrenoble INP, UJF, CNRSSaint Martin d’HèresFrance
  2. 2.Department of Sciences, DNRF Centre “Glass and Time”, IMFUFARoskilde UniversityRoskildeDenmark

Personalised recommendations