Advertisement

Statistical mechanical approach to secondary processes and structural relaxation in glasses and glass formers

A leading model to describe the onset of Johari-Goldstein processes and their relationship with fully cooperative processes
  • A. Crisanti
  • L. LeuzziEmail author
  • M. Paoluzzi
Regular Article
Part of the following topical collections:
  1. Topical Issue on the Physics of Glasses

Abstract

The interrelation of dynamic processes active on separated time-scales in glasses and viscous liquids is investigated using a model displaying two time-scale bifurcations both between fast and secondary relaxation and between secondary and structural relaxation. The study of the dynamics allows for predictions on the system relaxation above the temperature of dynamic arrest in the mean-field approximation, that are compared with the outcomes of the equations of motion directly derived within the Mode Coupling Theory (MCT) for under-cooled viscous liquids. By varying the external thermodynamic parameters, a wide range of phenomenology can be represented, from a very clear separation of structural and secondary peak in the susceptibility loss to excess wing structures.

Keywords

Structural Relaxation Secondary Peak Secondary Process Tricritical Point Mode Coupling Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    G. Johari, M. Goldstein, J. Chem. Phys. 53, 2372 (1970).ADSCrossRefGoogle Scholar
  2. 2.
    G. Johari, M. Goldstein, J. Phys. Chem. 74, 2034 (1970).CrossRefGoogle Scholar
  3. 3.
    G. Johari, M. Goldstein, J. Chem. Phys. 55, 4245 (1971).ADSCrossRefGoogle Scholar
  4. 4.
    J. Wong, C. Angell, Glass: Structure by Spectroscopy (Dekker, New York, 1974).Google Scholar
  5. 5.
    S. Adichtchev, T. Blochowicz, C. Gainaru, V.N. Novikov, E.A. Rssler, C. Tschirwitz, J. Phys.: Condens. Matter 15, S835 (2003).ADSCrossRefGoogle Scholar
  6. 6.
    T. Blochowicz, C. Tschirwitz, S. Benkhof, E. Rssler, J. Chem. Phys. 118, 7544 (2003).ADSCrossRefGoogle Scholar
  7. 7.
    S. Adichtchev, T. Blochowicz, C. Tschirwitz, V.N. Novikov, E.A. Rössler, Phys. Rev. E 68, 011504 (2003).ADSCrossRefGoogle Scholar
  8. 8.
    K. Ngai, P. Lunkenheimer, C. Leon, U. Schneider, R. Brand, A. Loidl, J. Chem. Phys. 115, 1405 (2001).ADSCrossRefGoogle Scholar
  9. 9.
    K. Ngai, M. Paluch, J. Chem. Phys. 120, 857 (2004).ADSCrossRefGoogle Scholar
  10. 10.
    H. Cummins, J. Phys.: Condens. Matter 17, 1457 (2005).ADSCrossRefGoogle Scholar
  11. 11.
    W. Götze, M. Sperl, Phys. Rev. Lett. 92, 105701 (2004).ADSCrossRefGoogle Scholar
  12. 12.
    P. Chaudhuri, L. Berthier, P.I. Hurtado, W. Kob, Phys. Rev. E 81, 040502(R) (2010).ADSCrossRefGoogle Scholar
  13. 13.
    J. Stevenson, P. Wolynes, Nat. Phys. 6, 62 (2010).CrossRefGoogle Scholar
  14. 14.
    J. Wiedersich, T. Blochowicz, S. Benkhof, A. Kudlik, N. Surotsev, C. Tschirwitz, V. Novikov, E. Rössler, J. Phys.: Condens. Matter 11, A147 (1999).ADSCrossRefGoogle Scholar
  15. 15.
    A. Kudlik, C. Tschirwitz, T. Blochowicz, S. Benkhof, E. Rössler, J. Non-Cryst. Solids 235-237, 406 (1998).ADSCrossRefGoogle Scholar
  16. 16.
    R. Nozaki, D. Suzuki, S. Ozawa, Y. Shiozaki, J. Non-Cryst. Solids 235-237, 393 (1998).ADSCrossRefGoogle Scholar
  17. 17.
    T.R. Kirkpatrick, D. Thirumalai, Phys. Rev. B 36, 5388 (1987).ADSCrossRefGoogle Scholar
  18. 18.
    T.R. Kirkpatrick, D. Thirumalai, P.G. Wolynes, Phys. Rev. A 40, 1045 (1989).ADSCrossRefGoogle Scholar
  19. 19.
    A. Crisanti, H. Sommers, Z. Phys. B 87, 341 (1992).ADSCrossRefGoogle Scholar
  20. 20.
    A. Crisanti, H. Horner, H. Sommers, Z. Phys. B 92, 257 (1993).ADSCrossRefGoogle Scholar
  21. 21.
    J.P. Bouchaud, L. Cugliandolo, J. Kurchan, M. Mézard, Physica A 226, 243 (1996).ADSCrossRefGoogle Scholar
  22. 22.
    V. Krakoviack, Phys. Rev. B 76, 136401 (2007).ADSCrossRefGoogle Scholar
  23. 23.
    A. Crisanti, L. Leuzzi, Phys. Rev. B 76, 184417 (2007).ADSCrossRefGoogle Scholar
  24. 24.
    A. Crisanti, L. Leuzzi, Phys. Rev. B 76, 136402 (2007).ADSCrossRefGoogle Scholar
  25. 25.
    M.J. Greenall, M.E. Cates, Phys. Rev. E 75, 051503 (2007).ADSCrossRefGoogle Scholar
  26. 26.
    A. Crisanti, L. Leuzzi, Phys. Rev. Lett. 93, 217203 (2004).ADSCrossRefGoogle Scholar
  27. 27.
    A. Crisanti, L. Leuzzi, Phys. Rev. B 73, 014412 (2006).ADSCrossRefGoogle Scholar
  28. 28.
    W. Götze, Complex Dynamics of Glass Forming Liquids. A Mode-Coupling Theory (Oxford University Press, Oxford, UK, 2009).Google Scholar
  29. 29.
    L. Leuzzi, Philos. Mag. 88, 4015 (2008).ADSCrossRefGoogle Scholar
  30. 30.
    H. Sompolinsky, Phys. Rev. Lett. 47, 935 (1981).ADSCrossRefGoogle Scholar
  31. 31.
    H. Sompolinsky, A. Zippelius, Phys. Rev. B 25, 6860 (1982).ADSCrossRefGoogle Scholar
  32. 32.
    P. Martin, E. Siggia, H. Rose, Phys. Rev. A 8, 423 (1973).ADSCrossRefGoogle Scholar
  33. 33.
    C. De Dominicis, Phys. Rep. 67, 37 (1980).ADSCrossRefGoogle Scholar
  34. 34.
    A. Crisanti, Nucl. Phys. B 796, 425 (2008).ADSCrossRefGoogle Scholar
  35. 35.
    E. Donth, The Glass Transition (Springer, Berlin, 2001).Google Scholar
  36. 36.
    K. Ngai, J. Phys.: Condens. Matter 15, S1107 (2003).ADSCrossRefGoogle Scholar
  37. 37.
    K. Ngai, S. Capaccioli, Phys. Rev. E 69, 031501 (2004).ADSCrossRefGoogle Scholar
  38. 38.
    R. Kohlrausch, Pogg. Ann. Phys. 12, 393 (1847).Google Scholar
  39. 39.
    G. Williams, D. Watts, Trans. Faraday Soc. 66, 80 (1970).CrossRefGoogle Scholar
  40. 40.
    G. Johari, J. Chem. Phys. 58, 1766 (1973).ADSCrossRefGoogle Scholar
  41. 41.
    W. Götze, M. Sperl, Phys. Rev. E 66, 011405 (2002).ADSCrossRefGoogle Scholar
  42. 42.
    L. Sjögren, Phys. Rev. A 33, 1254 (1986).ADSCrossRefGoogle Scholar
  43. 43.
    W.G. Götze, L. Sjögren, J. Phys.: Condens. Matter 1, 4183 (1989).CrossRefGoogle Scholar
  44. 44.
    L. Leuzzi, T. Nieuwenhuizen, Thermodynamics of the Glassy State (Taylor & Francis, 2007).Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Dipartimento di FisicaUniversità “Sapienza”RomeItaly
  2. 2.CNR-ISCRomeItaly
  3. 3.CNR-IPCFUOS Roma “Kerberos”RomeItaly
  4. 4.Dipartimento di FisicaUniversità Roma TreRomeItaly

Personalised recommendations