Advertisement

Simulated glass-forming polymer melts: Glass transition temperature and elastic constants of the glassy state

  • B. Schnell
  • H. Meyer
  • C. Fond
  • J. P. Wittmer
  • J. BaschnagelEmail author
Regular Article
Part of the following topical collections:
  1. Topical Issue on the Physics of Glasses

Abstract

By means of molecular-dynamics simulation we study a flexible and a semiflexible bead-spring model for a polymer melt on cooling through the glass transition. Results for the glass transition temperature T g and for the elastic properties of the glassy state are presented. We find that T g increases with chain length N and is for all N larger for the semiflexible model. The N dependence of T g is compared to experimental results from the literature. Furthermore, we characterize the polymer glass below T g via its elastic properties, i.e., via the Lamé coefficients λ and μ. The Lamé coefficients are determined from the fluctuation formalism which allows to split λ and μ into affine (Born term) and nonaffine (fluctuation term) contributions. We find that the fluctuation term represents a substantial correction to the Born term. Since the Born terms for λ and μ are identical, the fluctuation terms are responsible for the different temperature dependence of the Lamé coefficients. While λ decreases linearly on approaching T g from below, the shear modulus μ displays a much stronger decrease near T g. From the present simulation data it is not possible to decide whether μ takes a finite value at T g, as would be expected from mode-coupling theory, or vanishes continuously, as suggested by recent work from replica theory.

Keywords

Glass Transition Temperature PDMS Elastic Constant Glassy State Polymer Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    M. Born, K. Huang, Dynamical Theory of Crystal Lattices (Clarendon Press, Oxford, 1954).Google Scholar
  2. 2.
    P.M. Chaikin, T.C. Lubensky, Principles of Condensed Matter Physics (Cambridge University Press, Cambridge, 1997).Google Scholar
  3. 3.
    D.C. Wallace, in Solid State Physics, edited by H. Ehrenreich, F. Seitz, D. Turnbull, Vol. 25 (Academic Press, New York, 1970) pp. 301--404Google Scholar
  4. 4.
    D.R. Squire, A.C. Holt, W.G. Hoover, Physica 42, 388 (1969).ADSCrossRefGoogle Scholar
  5. 5.
    J.R. Ray, M.C. Moody, A. Rahman, Phys. Rev. B 32, 733 (1985).ADSCrossRefGoogle Scholar
  6. 6.
    O. Farago, Y. Kantor, Phys. Rev. E 61, 2478 (2000).ADSCrossRefGoogle Scholar
  7. 7.
    J.F. Lutsko, J. Appl. Phys. 65, 2991 (1989).ADSCrossRefGoogle Scholar
  8. 8.
    K. Yoshimoto, T.S. Jain, K. Van Workum, P.F. Nealey, J.J. de Pablo, Phys. Rev. Lett. 93, 175501 (2004).ADSCrossRefGoogle Scholar
  9. 9.
    J.L. Barrat, J.N. Roux, J.P. Hansen, M.L. Klein, Europhys. Lett. 7, 707 (1988).ADSCrossRefGoogle Scholar
  10. 10.
    C. Maloney, A. Lemaître, Phys. Rev. Lett. 93, 195501 (2004).ADSCrossRefGoogle Scholar
  11. 11.
    A. Tanguy, J.P. Wittmer, F. Léonforte, J.L. Barrat, Phys. Rev. B 66, 174205 (2002).ADSCrossRefGoogle Scholar
  12. 12.
    F. Léonforte, R. Boissière, A. Tanguy, J.P. Wittmer, J.L. Barrat, Phys. Rev. B 72, 224206 (2005).ADSCrossRefGoogle Scholar
  13. 13.
    F. Léonforte, A. Tanguy, J.P. Wittmer, J.L. Barrat, Phys. Rev. Lett. 97, 055501 (2006).ADSCrossRefGoogle Scholar
  14. 14.
    M. Tsamados, A. Tanguy, C. Goldenberg, J.L. Barrat, Phys. Rev. E 80, 026112 (2009).ADSCrossRefGoogle Scholar
  15. 15.
    G.J. Papakonstantopoulos, R.A. Riggleman, J.L. Barrat, J.J. de Pablo, Phys. Rev. E 77, 041502 (2008).ADSCrossRefGoogle Scholar
  16. 16.
    K. Van Workum, J.J. de Pablo, Phys. Rev. E 67, 011505 (2003).ADSCrossRefGoogle Scholar
  17. 17.
    S. Peter, H. Meyer, J. Baschnagel, J. Polym. Sci. B 44, 2951 (2006).CrossRefGoogle Scholar
  18. 18.
    S. Peter, S. Napolitano, H. Meyer, M. Wübbenhorst, J. Baschnagel, Macromolecules 41, 7729 (2008).ADSCrossRefGoogle Scholar
  19. 19.
    M. Kröger, Phys. Rep. 390, 453 (2004).MathSciNetADSCrossRefGoogle Scholar
  20. 20.
    R. Auhl, R. Everaers, G.S. Grest, K. Kremer, S.J. Plimpton, J. Chem. Phys. 119, 12718 (2003).ADSCrossRefGoogle Scholar
  21. 21.
    R. Faller, F. Müller-Plathe, A. Heuer, Macromolecules 33, 6602 (2000).ADSCrossRefGoogle Scholar
  22. 22.
    R. Faller, A. Kolb, F. Müller-Plathe, Phys. Chem. Chem. Phys. 1, 2071 (1999).CrossRefGoogle Scholar
  23. 23.
    K.G. Honnell, J.G. Curro, K.S. Schweizer, Macromolecules 23, 3496 (1990).ADSCrossRefGoogle Scholar
  24. 24.
    A.R. Khokhlov, A.N. Semenov, Macromolecules 19, 373 (1986).ADSCrossRefGoogle Scholar
  25. 25.
    W. Paul, G.D. Smith, Rep. Prog. Phys. 67, 1117 (2004).ADSCrossRefGoogle Scholar
  26. 26.
    M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids (Clarendon Press, Oxford, 1987).Google Scholar
  27. 27.
    An idea of how fast the simulated cooling process is may be obtained by converting our cooling rates to SI units. If we use the typical values ε LJ/k B ≈ 400 K and 2 × 10−11 s [68], we find for the slowest rate the estimate Γ = 5 × 10−6 (ε LJ/k B)/τ LJ ≈ 108 K/s. This value is at least an order of magnitude smaller than typical rates of atomistic simulations, e.g. for polystyrene[34] or SiO2 [30], but considerably exceeds the rates commonly employed in experiments which range from 10−3 K/s to 10 K/s [38]. However, this disparity does not necessarily invalidate simulation studies of the glass transition, as suggested for instance by the work of Soldera and Metatla who find a linear relationship between experimental T g values and numerical results from atomistic simulations of various vinylic polymers [77].Google Scholar
  28. 28.
    J. Buchholz, W. Paul, F. Varnik, K. Binder, J. Chem. Phys. 117, 7364 (2002).ADSCrossRefGoogle Scholar
  29. 29.
    K. Vollmayr, W. Kob, K. Binder, J. Chem. Phys. 105, 4714 (1996).ADSCrossRefGoogle Scholar
  30. 30.
    K. Vollmayr, W. Kob, K. Binder, J. Chem. Phys. 54, 15808 (1996).Google Scholar
  31. 31.
    W. Kob, J.L. Barrat, Eur. Phys. J. B 13, 319 (2000).ADSCrossRefGoogle Scholar
  32. 32.
    M. Warren, J. Rottler, Phys. Rev. E 76, 031802 (2007).ADSCrossRefGoogle Scholar
  33. 33.
    G.B. McKenna, in Comprehensive Polymer Science, edited by C. Booth, C. Price, Vol. 2 (Pergamon, New York, 1986) pp. 311--362Google Scholar
  34. 34.
    A.V. Lyulin, N.K. Balabaev, M.A.J. Michels, Macromolecules 36, 8574 (2003).ADSCrossRefGoogle Scholar
  35. 35.
    K. Kremer, G.S. Grest, J. Chem. Phys. 92, 5057 (1990).ADSCrossRefGoogle Scholar
  36. 36.
    S.K. Sukumaran, G.S. Grest, K. Kremer, R. Everaers, J. Polym. Sci. B 43, 917 (2005).CrossRefGoogle Scholar
  37. 37.
    G. Strobl, The Physics of Polymers: Concepts for Understanding Their Structures and Behavior (Springer, Berlin-Heidelberg, 1997).Google Scholar
  38. 38.
    R. Brüning, K. Samwer, Phys. Rev. B 46, 11318 (1992).ADSCrossRefGoogle Scholar
  39. 39.
    J.L. Barrat, J. Baschnagel, A. Lyulin, Soft Matter 6, 3420 (2010).ADSCrossRefGoogle Scholar
  40. 40.
    F. Varnik, PhD thesis, Johannes Gutenberg-Universität Mainz (2000) (available from http://archimed.uni-mainz.de/pub/2001/0007).
  41. 41.
    J. Hintermeyer, A. Herrmann, R. Kahlau, C. Goiceanu, E.A. Rössler, Macromolecules 41, 9335 (2008).ADSCrossRefGoogle Scholar
  42. 42.
    A.L. Agapov, A.P. Sokolov, Macromolecules 42, 2877 (2009).ADSCrossRefGoogle Scholar
  43. 43.
    M. Durand, H. Meyer, O. Benzerara, J. Baschnagel, O. Vitrac, J. Chem. Phys. 132, 194902 (2010).ADSCrossRefGoogle Scholar
  44. 44.
    B. Lobe, J. Baschnagel, J. Chem. Phys. 101, 1616 (1994).ADSCrossRefGoogle Scholar
  45. 45.
    T.G. Fox, P.J. Flory, J. Polym. Sci. 14, 315 (1954).ADSCrossRefGoogle Scholar
  46. 46.
    T.G. Fox, S. Loshaek, J. Polym. Sci. 15, 371 (1955).ADSCrossRefGoogle Scholar
  47. 47.
    J. Dudowicz, K.F. Freed, J.F. Douglas, Adv. Chem. Phys. 137, 125 (2008).CrossRefGoogle Scholar
  48. 48.
    A. Rudin, D. Burgin, Polymer 16, 291 (1975).CrossRefGoogle Scholar
  49. 49.
    J.M.G. Cowie, P.M. Toporowski, Eur. Polym. J. 4, 621 (1968).CrossRefGoogle Scholar
  50. 50.
    G. Pezzin, F. Zilio-Grandi, P. Sanmartin, Eur. Polym. J. 6, 1053 (1970).CrossRefGoogle Scholar
  51. 51.
    M.V. Jarić, U. Mohanty, Phys. Rev. B 37, 4441 (1988).ADSCrossRefGoogle Scholar
  52. 52.
    N. Sushko, P. van der Schoot, M.A.J. Michels, J. Chem. Phys. 118, 6594 (2003).ADSCrossRefGoogle Scholar
  53. 53.
    R. Zwanzig, R.D. Mountain, J. Chem. Phys. 43, 4464 (1965).MathSciNetADSCrossRefGoogle Scholar
  54. 54.
    J.S. Rowlinson, Liquids and Liquid Mixtures (Butterworths, London, 1959).Google Scholar
  55. 55.
    H. Yoshino, M. Mézard, Phys. Rev. Lett. 105, 015504 (2010).ADSCrossRefGoogle Scholar
  56. 56.
    G. Parisi, F. Zamponi, Rev. Mod. Phys. 82, 789 (2010).ADSCrossRefGoogle Scholar
  57. 57.
    B. Schnell, PhD thesis, Université de Strasbourg (2006) (available from http://eprints-scd-ulp.u-strasbg.fr:8080/545/)
  58. 58.
    L.D. Landau, E.M. Lifshitz, Theory of Elasticity, Vol. 7 (Elsevier, Amsterdam, 1986).Google Scholar
  59. 59.
    J. Zhang, B.D. Todd, Phys. Rev. E 69, 031111 (2004).ADSCrossRefGoogle Scholar
  60. 60.
    R.A. Riggleman, J.J. de Pablo, J. Chem. Phys. 128, 224504 (2008).ADSCrossRefGoogle Scholar
  61. 61.
    R. Yamamoto, A. Onuki, J. Chem. Phys. 117, 2359 (2002).ADSCrossRefGoogle Scholar
  62. 62.
    W. Götze, Complex Dynamics of Glass-Forming Liquids: A Mode-Coupling Theory (Oxford University Press, Oxford, 2009).Google Scholar
  63. 63.
    F. Varnik, O. Henrich, Phys. Rev. B 73, 174209 (2006).ADSCrossRefGoogle Scholar
  64. 64.
    G. Szamel, EPL 91, 56004 (2010).ADSCrossRefGoogle Scholar
  65. 65.
    K. Chen, K.S. Schweizer, J. Chem. Phys. 126, 014904 (2007).ADSCrossRefGoogle Scholar
  66. 66.
    K. Chen, E.J. Saltzman, K.S. Schweizer, J. Phys.: Condens. Matter 21, 50301 (2009).Google Scholar
  67. 67.
    M. Fuchs, M.R. Mayr, Phys. Rev. E 60, 5742 (1999).ADSCrossRefGoogle Scholar
  68. 68.
    J. Baschnagel, F. Varnik, J. Phys.: Condens. Matter 17, R851 (2005).ADSCrossRefGoogle Scholar
  69. 69.
    P.H. Mott, J.R. Dorgan, C.M. Roland, J. Sound Vib. 312, 572 (2008).ADSCrossRefGoogle Scholar
  70. 70.
    M. Bernabei, A.J. Moreno, J. Colmenero, Phys. Rev. Lett. 101, 255701 (2008).ADSCrossRefGoogle Scholar
  71. 71.
    M. Bernabei, A.J. Moreno, J. Colmenero, J. Chem. Phys. 131, 204502 (2009).ADSCrossRefGoogle Scholar
  72. 72.
    S. Krushev, W. Paul, G.D. Smith, Macromolecules 35, 4198 (2002).ADSCrossRefGoogle Scholar
  73. 73.
    J.V. Heffernan, J. Budzien, A.T. Wilson, R.J. Baca, V.J. Aston, F. Avila, J.D. McCoy, D.B. Adolf, J. Chem. Phys. 126, 184904 (2007).ADSCrossRefGoogle Scholar
  74. 74.
    S.H. Chong, M. Fuchs, Phys. Rev. Lett. 88, 185702 (2002).ADSCrossRefGoogle Scholar
  75. 75.
    J. Dudowicz, K.F. Freed, J.F. Douglas, J. Phys. Chem. B 109, 21285 (2005).CrossRefGoogle Scholar
  76. 76.
    M. Durand, PhD thesis, Université de Strasbourg (2010).Google Scholar
  77. 77.
    A. Soldera, N. Metatla, Phys. Rev. E 74, 061803 (2006).ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • B. Schnell
    • 1
  • H. Meyer
    • 1
  • C. Fond
    • 2
  • J. P. Wittmer
    • 1
  • J. Baschnagel
    • 1
    Email author
  1. 1.Institut Charles SadronUniversité de Strasbourg, CNRS UPR 22Strasbourg Cedex 2France
  2. 2.Institut de Mécanique des Fluides et des SolidesStrasbourgFrance

Personalised recommendations