Advertisement

Testing “microscopic” theories of glass-forming liquids

  • L. Berthier
  • G. TarjusEmail author
Regular Article
Part of the following topical collections:
  1. Topical Issue on the Physics of Glasses

Abstract

We assess the validity of “microscopic” approaches of glass-forming liquids based on the sole knowledge of the static pair density correlations. To do so, we apply them to a benchmark provided by two liquid models that share very similar static pair density correlation functions while displaying distinct temperature evolutions of their relaxation times. We find that the approaches are unsuccessful in describing the difference in the dynamical behavior of the two models. Our study is not exhaustive, and we have not tested the effect of adding corrections by including, for instance, three-body density correlations. Yet, our results appear strong enough to challenge the claim that the slowdown of relaxation in glass-forming liquids, for which it is well established that the changes of the static structure factor with temperature are small, can be explained by “microscopic” approaches only requiring the static pair density correlations as nontrivial input.

Keywords

Static Pair Pair Correlation Function Excess Entropy Static Structure Factor Ideal Glass Transition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    G. Tarjus, in Dynamical Heterogeneities in Glasses, Colloids, and Granular Media, edited by L. Berthier, G. Biroli, J.-P. Bouchaud, L. Cipelletti, W. van Saarloos (Oxford University Press, Oxford, 2011).Google Scholar
  2. 2.
    R.G. Palmer, D.L. Stein, E. Abrahams, P.W. Anderson, Phys. Rev. Lett. 53, 958 (1984).ADSCrossRefGoogle Scholar
  3. 3.
    J.P. Garrahan, D. Chandler, Proc. Natl. Acad. Sci. U.S.A. 100, 9710 (2003).ADSCrossRefGoogle Scholar
  4. 4.
    D. Chandler, J.P. Garrahan, Annu. Rev. Phys. Chem. 61, 191 (2010).CrossRefGoogle Scholar
  5. 5.
    J.-P. Bouchaud, G. Biroli, J. Chem. Phys. 121, 7347 (2004).ADSCrossRefGoogle Scholar
  6. 6.
    A. Montanari, G. Semerjian, J. Stat. Phys. 125, 22 (2006).MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    A. Cavagna, T.S. Grigera, P. Verrocchio, Phys. Rev. Lett. 98, 187801 (2007).ADSCrossRefGoogle Scholar
  8. 8.
    G. Biroli, J.-P. Bouchaud, A. Cavagna, T.S. Grigera, P. Verrocchio, Nat. Phys. 4, 771 (2008).CrossRefGoogle Scholar
  9. 9.
    P.J. Steinhardt, D.R. Nelson, M. Ronchetti, Phys. Rev. Lett. 47, 1297 (1981).ADSCrossRefGoogle Scholar
  10. 10.
    H. Shintani, H. Tanaka, Nat. Phys. 2, 200 (2006).CrossRefGoogle Scholar
  11. 11.
    F. Sausset, G. Tarjus, Phys. Rev. Lett. 104, 065701 (2010).ADSCrossRefGoogle Scholar
  12. 12.
    J. Kurchan, D. Levine, J. Phys. A: Math. Theor. 44, 035001 (2011).MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    D.R. Nelson, Defects and Geometry in Condensed Matter Physics (Cambridge University Press, Cambridge, 2002).Google Scholar
  14. 14.
    D. Kivelson, S.A. Kivelson, X.-L. Zhao, Z. Nussinov, G. Tarjus, Physica A 219, 27 (1995).ADSCrossRefGoogle Scholar
  15. 15.
    G. Tarjus, S.A. Kivelson, Z. Nussinov, P. Viot, J. Phys.: Condens. Matter 17, R1143 (2005).ADSCrossRefGoogle Scholar
  16. 16.
    T.R. Kirkpatrick, D. Thirumalai, P.G. Wolynes, Phys. Rev. A 40, 1045 (1989).ADSCrossRefGoogle Scholar
  17. 17.
    V. Lubchenko, P.G. Wolynes, Annu. Rev. Phys. Chem. 58, 235 (2007).ADSCrossRefGoogle Scholar
  18. 18.
    W. Götze, in Liquids, Freezing, and the Glass Transition, edited by J.P. Hansen, D. Levesque, J. Zinn-Justin (North Holland, Amsterdam, 1991).Google Scholar
  19. 19.
    R. Schilling, in Collective Dynamics of Nonlinear and Disordered Systems, edited by G.R. Radons, W. Just, P. Haeussler (Springer, Berlin, 2003).Google Scholar
  20. 20.
    L. Berthier, G. Tarjus, Phys. Rev. E 82, 031502 (2010).ADSCrossRefGoogle Scholar
  21. 21.
    Y. Singh, J.P. Stoessel, P.G. Wolynes, Phys. Rev. Lett. 54, 1059 (1985).ADSCrossRefGoogle Scholar
  22. 22.
    R.W. Hall, P.G. Wolynes, J. Phys. Chem. B 112, 301 (2008).CrossRefGoogle Scholar
  23. 23.
    M. Mézard, G. Parisi, Phys. Rev. Lett. 79, 2486 (1997) preprint arXiv:0910.2838 (2009).ADSCrossRefGoogle Scholar
  24. 24.
    G. Parisi, F. Zamponi, Rev. Mod. Phys. 82, 789 (2010).ADSCrossRefGoogle Scholar
  25. 25.
    K.S. Schweizer, E.J. Saltzman, J. Chem. Phys. 119, 1181 (2003).ADSCrossRefGoogle Scholar
  26. 26.
    K.S. Schweizer, J. Chem. Phys. 123, 244501 (2005).ADSCrossRefGoogle Scholar
  27. 27.
    E.J. Saltzman, K.S. Schweizer, J. Chem. Phys. 125, 044509 (2006).ADSCrossRefGoogle Scholar
  28. 28.
    J. Mittal, J.R. Errington, T.M. Truskett, J. Phys. Chem. B 110, 18147 (2006).CrossRefGoogle Scholar
  29. 29.
    M.J. Pond, W.P. Krekelberg, V.K. Shen, J.R. Errington, T.M. Truskett, J. Chem. Phys. 131, 161101 (2009).ADSCrossRefGoogle Scholar
  30. 30.
    L. Berthier, G. Tarjus, Phys. Rev. Lett. 103, 170601 (2009).ADSCrossRefGoogle Scholar
  31. 31.
    L. Berthier, G. Tarjus, J. Chem. Phys. 134, 214503 (2011).ADSCrossRefGoogle Scholar
  32. 32.
    J.D. Weeks, D. Chandler, H.C. Andersen, J. Chem. Phys. 54, 5237 (1971).ADSCrossRefGoogle Scholar
  33. 33.
    W. Kob, H.C. Andersen, Phys. Rev. Lett. 73, 1376 (1994).ADSCrossRefGoogle Scholar
  34. 34.
    E. Flenner, G. Szamel, Phys. Rev. E 72, 031508 (2005).ADSCrossRefGoogle Scholar
  35. 35.
    G. Nägele, J.K.G. Dhont, J. Chem. Phys. 108, 9566 (1998).ADSCrossRefGoogle Scholar
  36. 36.
    G. Nägele, J. Bergenholtz, J.K.G. Dhont, J. Chem. Phys. 110, 7037 (1999).ADSCrossRefGoogle Scholar
  37. 37.
    T.R. Kirkpatrick, P.G. Wolynes, Phys. Rev. A 35, 3072 (1987).ADSCrossRefGoogle Scholar
  38. 38.
    T.R. Kirkpatrick, P.G. Wolynes, Phys. Rev. B 36, 8552 (1987).ADSCrossRefGoogle Scholar
  39. 39.
    T.R. Kirkpatrick, D. Thirumalai, Phys. Rev. Lett. 58, 2091 (1987).MathSciNetADSCrossRefGoogle Scholar
  40. 40.
    T.R. Kirkpatrick, D. Thirumalai, J. Phys. A 22, L149 (1989).MathSciNetADSCrossRefGoogle Scholar
  41. 41.
    C. Dasgupta, O. Valls, Phys. Rev. E 50, 3916 (1984).ADSCrossRefGoogle Scholar
  42. 42.
    C. Dasgupta, O. Valls, Phys. Rev. E 59, 3123 (1999).ADSCrossRefGoogle Scholar
  43. 43.
    R. Monasson, Phys. Rev. Lett. 75, 2847 (1995).ADSCrossRefGoogle Scholar
  44. 44.
    S. Franz, M. Cardenas, G. Parisi, J. Chem. Phys. 110, 1726 (1999).ADSCrossRefGoogle Scholar
  45. 45.
    P.G. Wolynes, in Proceedings of the International Symposium on Frontiers in Science, edited by S.S. Chan, P.G. Debrunner, AIP Conf. Proc., Vol. 180 (1988) p. 39Google Scholar
  46. 46.
    T.V. Ramakrishnan, M. Yussouff, Phys. Rev. B 19, 2775 (1979).ADSCrossRefGoogle Scholar
  47. 47.
    J.P. Hansen, I.R. McDonald, Theory of Simple Liquids (Elsevier, Amsterdam, 1986).Google Scholar
  48. 48.
    J.P. Stoessel, P.W. Wolynes, J. Chem. Phys. 80, 4502 (1984).ADSCrossRefGoogle Scholar
  49. 49.
    Y. Rosenfeld, Phys. Rev. A 15, 2545 (1977).ADSCrossRefGoogle Scholar
  50. 50.
    Y. Rosenfeld, J. Phys.: Condens. Matter 11, 5415 (1999).ADSCrossRefGoogle Scholar
  51. 51.
    J. Mittal, J.R. Errington, T.M. Truskett, J. Chem. Phys. 125, 076102 (2006).ADSCrossRefGoogle Scholar
  52. 52.
    R. Chopra, T.M. Truskett, J.R. Errington, J. Chem. Phys. 133, 104506 (2010).ADSCrossRefGoogle Scholar
  53. 53.
    G. Adam, J.H. Gibbs, J. Chem. Phys. 43, 139 (1965).ADSCrossRefGoogle Scholar
  54. 54.
    W.P. Krekelberg, J. Mittal, V. Ganesan, T.M. Truskett, J. Chem. Phys. 127, 044502 (2007).ADSCrossRefGoogle Scholar
  55. 55.
    R. Chopra, T.M. Truskett, J. Errington, J. Phys. Chem. B 114, 10558 (2010).CrossRefGoogle Scholar
  56. 56.
    M.E. Johnson, T. Head-Gordon, J. Chem. Phys. 130, 214510 (2009).ADSCrossRefGoogle Scholar
  57. 57.
    G. Goel, W.P. Krekelberg, M.J. Pond, J. Mittal, V.K. Shen, J.R. Errington, T.M. Truskett, J. Stat. Mech.: Theor. Exp., P004006 (2009).Google Scholar
  58. 58.
    M. Nauroth, W. Kob, Phys. Rev. E 55, 657 (1997).ADSCrossRefGoogle Scholar
  59. 59.
    H. Kang, T. Ree, F. Ree, J. Chem. Phys. 84, 4547 (1986).ADSCrossRefGoogle Scholar
  60. 60.
    J.-H. Kim, T. Ree, F. Ree, J. Chem. Phys. 91, 3133 (1989).ADSCrossRefGoogle Scholar
  61. 61.
    D.C. Viehman, K.S. Schweizer, Phys. Rev. E 78, 051404 (2008).ADSCrossRefGoogle Scholar
  62. 62.
    U.R. Pedersen, N.P. Bailey, T.B. Schroder, J.C. Dyre, Phys. Rev. Lett. 100, 015701 (2008).ADSCrossRefGoogle Scholar
  63. 63.
    N.P. Bailey, U.R. Pedersen, N. Gnan, T.B. Schroder, J.C. Dyre, J. Chem. Phys. 130, 039902 (2009).ADSCrossRefGoogle Scholar
  64. 64.
    D. Coslovich, C.M. Roland, J. Phys. Chem. B 112, 1329 (2008).CrossRefGoogle Scholar
  65. 65.
    C. Renner, H. Löwen, J.-L. Barrat, Phys. Rev. E 52, 5091 (1995).ADSCrossRefGoogle Scholar
  66. 66.
    R. Schilling, G. Szamel, Europhys. Lett. 61, 207 (2003).ADSCrossRefGoogle Scholar
  67. 67.
    R. Schilling, G. Szamel, J. Phys.: Condens. Matter 15, S967 (2003).ADSCrossRefGoogle Scholar
  68. 68.
    W. Van Ketel, C. Das, D. Frenkel, Phys. Rev. Lett. 94, 135703 (2005).ADSCrossRefGoogle Scholar
  69. 69.
    D. Coslovich, Phys. Rev. E 83, 051505 (2011).ADSCrossRefGoogle Scholar
  70. 70.
    K.N. Pham, A.M. Puertas, J. Bergenholtz, S.U. Egel- haaf, A. Moussaid, P.N. Pusey, A.B. Schofield, M.E. Cates, M. Fuchs, W.C.K. Poon, Science 296, 5565 (2002).CrossRefGoogle Scholar
  71. 71.
    L. Berthier, E. Flenner, H. Jacquin, G. Szamel, Phys. Rev. E 81, 031505 (2010).ADSCrossRefGoogle Scholar
  72. 72.
    L. Berthier, A.J. Moreno, G. Szamel, Phys. Rev. E 82, 060501(R) (2010).ADSGoogle Scholar
  73. 73.
    G. Odriozola, L. Berthier, J. Chem. Phys. 134, 054504 (2011).ADSCrossRefGoogle Scholar
  74. 74.
    K.S. Schweizer, J. Chem. Phys. 127, 164506 (2007).ADSCrossRefGoogle Scholar
  75. 75.
    E. Zaccarelli, C. Valeriani, E. Sanz, W.C.K. Poon, M.E. Cates, P.N. Pusey, Phys. Rev. Lett. 103, 135704 (2009).ADSCrossRefGoogle Scholar
  76. 76.
    D. El Masri, G. Brambilla, M. Pierno, G. Petekidis, A. Schofield, L. Berthier, L. Cipelletti, J. Stat. Mech., P07015 (2009).Google Scholar
  77. 77.
    G. Brambilla, D. El Masri, M. Pierno, G. Petekidis, A.B. Schofield, L. Berthier, L. Cipelletti, Phys. Rev. Lett. 102, 085703 (2009).ADSCrossRefGoogle Scholar
  78. 78.
    L. Berthier, T.A. Witten, Phys. Rev. 80, 021502 (2009).ADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Laboratoire Charles Coulomb, CNRS-UMR 5221Université Montpellier 2Montpellier CedexFrance
  2. 2.LPTMC, CNRS-UMR 7600Université Pierre et Marie CurieParis Cedex 05France

Personalised recommendations