Advertisement

The role of the dynamic crossover temperature and the arrest in glass-forming fluids

  • F. MallamaceEmail author
  • C. Corsaro
  • H. E. Stanley
  • S. -H. Chen
Regular Article
Part of the following topical collections:
  1. Topical Issue on the Physics of Glasses

Abstract

We discuss the role of the dynamic glass-forming fragile-to-strong crossover (FSC) in supercooled liquids. In the FSC, significant dynamic changes such as the decoupling (the violation of the Stokes-Einstein relation) of homologous transport parameters, e.g., the density relaxation time τ and the viscosity η, occur at a characteristic temperature T c . We study the FSC using a scaling law approach. In particular, we use both forms of the mode-coupling theory (MCT): the original (ideal) and the extended form, which explicitly describes energy hopping processes. We demonstrate that T c plays the most important physical role in understanding dynamic arrest processes.

Keywords

Transport Parameter Supercooled Liquid Glassy Material Arrhenius Behavior Crossover Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    P.W. Anderson, Science 267, 1615 (1995).CrossRefGoogle Scholar
  2. 2.
    K. Binder, W. Kob Glassy, Materials and Disordered Solids: An Introduction to their Statistical Mechanics (World Scientific, Singapore, 2005).Google Scholar
  3. 3.
    C.A. Angell, Science 267, 1924 (1995).ADSCrossRefGoogle Scholar
  4. 4.
    J.C. Dyre, Rev. Mod. Phys. 78, 953 (2006).ADSCrossRefGoogle Scholar
  5. 5.
    O.N. Birge, S.R. Nagele, Phys. Rev. Lett. 54, 2674 (1985).ADSCrossRefGoogle Scholar
  6. 6.
    L.P. Kadanoff, P.C. Martin, Ann. Phys. (N.Y.) 24, 419 (1963).MathSciNetADSzbMATHCrossRefGoogle Scholar
  7. 7.
    U. Bengtzelius, W. Götze, A. Sjölander, J. Phys. C 17, 5915 (1984).ADSCrossRefGoogle Scholar
  8. 8.
    W. Götze, A. Latz, J. Phys.: Condens. Matter 1, 4169 (1989).ADSCrossRefGoogle Scholar
  9. 9.
    J. Jäckle, Physica A 126, 377 (1990).CrossRefGoogle Scholar
  10. 10.
    W. Götze, L. Sjögren, Rep. Prog. Phys. 55, 241 (1992).CrossRefGoogle Scholar
  11. 11.
    V. Lubchenko, P.G. Wolynes, Annu. Rev. Phys. Chem. 58, 235 (2007).ADSCrossRefGoogle Scholar
  12. 12.
    D. Kivelson, G. Tarjus, X. Zhao, S. Kivelson, Phys. Rev. E 53, 751 (1996).ADSCrossRefGoogle Scholar
  13. 13.
    F.H. Stillinger, J. Chem. Phys. 88, 7818 (1988).MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    J.P. Garrahan, D. Chandler, Proc. Natl. Acad. Sci. U.S.A. 100, 9710 (2003).ADSCrossRefGoogle Scholar
  15. 15.
    J.P. Eckmann, I. Procaccia, Phys. Rev. E 78, 011503 (2008).MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    U. Tracht et al., Phys. Rev. Lett. 81, 2727 (1998).ADSCrossRefGoogle Scholar
  17. 17.
    G. Tarjus, D. Kivelson, J. Chem. Phys. 103, 3071 (1995).ADSCrossRefGoogle Scholar
  18. 18.
    J. Chang, H. Sillescu, J. Phys. Chem. B 101, 8794 (1997).CrossRefGoogle Scholar
  19. 19.
    M.D. Ediger, Annu. Rev. Phys. Chem. 51, 99 (2000).ADSCrossRefGoogle Scholar
  20. 20.
    P. Taborek, R.N. Kleinman, D.J. Bishop, Phys. Rev. B 34, 1835 (1986).ADSCrossRefGoogle Scholar
  21. 21.
    R. Richert, H. Bässler, J. Phys.: Condens. Matter 2, 2273 (1990).ADSCrossRefGoogle Scholar
  22. 22.
    E. Rössler, Ber. Bunsenges. Phys. Chem. 94, 225 (1990).CrossRefGoogle Scholar
  23. 23.
    E. Rössler, K.U. Hess, V.N. Novikov, J. Non-Cryst. Solids 223, 207 (1998).ADSCrossRefGoogle Scholar
  24. 24.
    T. Hecksher et al., Nat. Phys. 4, 737 (2008).CrossRefGoogle Scholar
  25. 25.
    Y.S. Elmatad, D. Chandler, J.P. Garrahan, J. Phys. Chem. B 113, 5563 (2009).CrossRefGoogle Scholar
  26. 26.
    T.R. Kirkpatrik, Phys. Rev A 31, 939 (1985).ADSCrossRefGoogle Scholar
  27. 27.
    G. Adams, J.H. Gibbs, J. Chem. Phys. 43, 139 (1965).ADSCrossRefGoogle Scholar
  28. 28.
    F.H. Sitllinger, T.A. Weber, Phys. Rev. A 25, 978 (1982).ADSCrossRefGoogle Scholar
  29. 29.
    F.H. Sitllinger, T.A. Weber, Science 225, 983 (1984).ADSCrossRefGoogle Scholar
  30. 30.
    G.P. Johari, Philos. Mag. 86, 1567 (2006).ADSCrossRefGoogle Scholar
  31. 31.
    K. Ito, C.T. Moynihan, C.A. Angell, Nature 398, 492 (1999).ADSCrossRefGoogle Scholar
  32. 32.
    F. Stickel, E.W. Fisher, R. Richert, J. Chem. Phys. 102, 6251 (1995).ADSCrossRefGoogle Scholar
  33. 33.
    A.C. Pan, J.P. Garrahan, D. Chandler, Phys. Rev. E 72, 041106 (2005).ADSCrossRefGoogle Scholar
  34. 34.
    J.D. Stevenson, J. Schmalian, P.G. Wolynes, Nat. Phys. 2, 268 (2006).CrossRefGoogle Scholar
  35. 35.
    E. Lerner, I. Procaccia, I. Regev, Phys. Rev. E. 79, 031501 (2009).ADSCrossRefGoogle Scholar
  36. 36.
    E. Lerner, I. Procaccia, J. Zylberg, Phys. Rev. Lett. 102, 125701 (2009).ADSCrossRefGoogle Scholar
  37. 37.
    Y.J. Jung, J.P. Garrahan, D. Chandler, Phys. Rev. E 69 D, 061205 (2004).ADSCrossRefGoogle Scholar
  38. 38.
    G. Li, W.M. Du, A. Sakai, H.Z. Cummins, Phys. Rev. A 46, 3343 (1992).ADSCrossRefGoogle Scholar
  39. 39.
    Y. Yang, K.A. Nelson, J. Chem. Phys. 103, 7732 (1995).ADSCrossRefGoogle Scholar
  40. 40.
    G.B. McKenna, Nat. Phys. 4, 673 (2008).CrossRefGoogle Scholar
  41. 41.
    J.C. Mauro et al., Proc. Natl. Acad. Sci. U.S.A. 106, 19780 (2009).Google Scholar
  42. 42.
    J.C. Martinez Garcia, J.L.I. Tamarit, S.J. Rzoska, J. Chem. Phys. 134, 024521 (2011).ADSCrossRefGoogle Scholar
  43. 43.
    L. Liu et al., Phys. Rev. Lett. 95, 117802 (2005).ADSCrossRefGoogle Scholar
  44. 44.
    F. Mallamace et al., J. Chem. Phys. 124, 161102 (2006).ADSCrossRefGoogle Scholar
  45. 45.
    S.H. Chen et al., Proc. Natl. Acad. Sci. U.S.A. 103, 12974 (2006).ADSCrossRefGoogle Scholar
  46. 46.
    F. Mallamace et al., Proc. Natl. Acad. Sci. U.S.A. 105, 12725 (2008).ADSCrossRefGoogle Scholar
  47. 47.
    P. Kumar et al., Phys. Rev. Lett. 97, 177802 (2006).ADSCrossRefGoogle Scholar
  48. 48.
    P. Kumar et al., Proc. Natl. Acad. Sci. U.S.A. 104, 9575 (2007).ADSCrossRefGoogle Scholar
  49. 49.
    L. Xu et al., Nat. Phys. 5, 565 (2009).CrossRefGoogle Scholar
  50. 50.
    S.H. Chong, Phys. Rev. E 78, 041501 (2008).ADSCrossRefGoogle Scholar
  51. 51.
    S.H. Chong, S.H. Chen, F. Mallamace, J. Phys.: Condens. Matter 21, 504101 (2009).CrossRefGoogle Scholar
  52. 52.
    A. Bartsch, K. Rätzke, A. Meyer, F. Faupel, Phys. Rev. Lett. 104, 195901 (2010).ADSCrossRefGoogle Scholar
  53. 53.
    F. Mallamace et al., Proc. Natl. Acad. Sci. U.S.A. 107, 22457 (2010).ADSCrossRefGoogle Scholar
  54. 54.
    K. Schroter, E. Donth, J. Chem. Phys. 113, 9101 (2000).ADSCrossRefGoogle Scholar
  55. 55.
    W.T. Laughlin, D.R. Uhlmann, J. Phys. Chem. 78, 2317 (1972).CrossRefGoogle Scholar
  56. 56.
    C.H. Cho, J. Urquidi, S. Singh, G. Wilse Robinson, J. Phys. Chem B 103, 1991 (1999).CrossRefGoogle Scholar
  57. 57.
    L. Larini, A. Ottochian, C. De Michele, D. Leporini, Nat. Phys. 4, 42 (2008).CrossRefGoogle Scholar
  58. 58.
    A. Ottochian, C. De Michele, D. Leporini, J. Chem. Phys. 131, 224517 (2009).ADSCrossRefGoogle Scholar
  59. 59.
    S.F. Swallen, P.A. Bonvallet, R.J. McMahon, M.D. Ediger, Phys. Rev. Lett. 90, 015901 (2003).ADSCrossRefGoogle Scholar
  60. 60.
    J.F. Douglas, D. Leporini, J. Non-Cryst. Solids 235, 137 (1998).ADSCrossRefGoogle Scholar
  61. 61.
    F. Fernandez-Alonso et al., Phys. Rev. Lett. 98, 077801 (2007).ADSCrossRefGoogle Scholar
  62. 62.
    M.K. Mapes, S.F. Swallen, M.D. Ediger, J. Phys. Chem. B 100, 507 (2006).CrossRefGoogle Scholar
  63. 63.
    L. Andreozzi, A. Di Schino, M. Giordano, D. Leporini, Europhys. Lett. 38, 669 (1997).ADSCrossRefGoogle Scholar
  64. 64.
    D. Banerjee, S.N. Bhat, S.V. Bhat, D. Leporini, Proc. Natl. Acad. Sci. U.S.A. 106, 11448 (2009).ADSCrossRefGoogle Scholar
  65. 65.
    S. Sastry, P.G. Debenedetti, S.H. Stillinger, Nature 393, 554 (1998).ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • F. Mallamace
    • 1
    • 2
    • 3
    Email author
  • C. Corsaro
    • 3
    • 4
  • H. E. Stanley
    • 2
  • S. -H. Chen
    • 1
  1. 1.Department of Nuclear Science and EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Center for Polymer Studies and Department of PhysicsBoston UniversityBostonUSA
  3. 3.Dipartimento di Fisica and CNISMUniversità di MessinaMessinaItaly
  4. 4.Fondazione Fulvio FrisoneCataniaItaly

Personalised recommendations